Android и iOS ✔
Мудрец
(11395)
4 года назад
Для решения заданий в математике используются три вида скобок: ( ), [ ], { }. Реже встречаются скобки такого вида ] и [, называемые обратными, или < и >, то есть в виде уголка. Их применение всегда парное, то есть имеется открывающаяся и закрывающаяся скобка в любом выражении, тогда оно имеет смысл . скобки позволяют разграничить и определить последовательность действий.
Фигурная непарная скобка типа { встречается при решении систем уравнений, что обозначает пересечение заданных множеств, а [ скобка используется при их объединении. Далее рассмотрим их применение.
Скобки для указания порядка выполнения действий
Основное предназначение скобок – указание порядка выполняемых действий. Тогда выражение может иметь одну или несколько пар круглых скобок. По правилу всегда выполняется первым действие в скобках, после чего умножение и деление, а позже сложение и вычитание.
Рассмотрим на примере заданное выражение. Если дан пример вида 5+3-2, тогда очевидно, что действия выполняются последовательно. Когда это же выражение записывается со скобками, тогда их последовательность меняется. То есть при (5+3)-2 первое действие выполняется в скобках. В данном случае изменений не будет. Если выражение будет записано в виде 5+(3-2), тогда в начале производятся вычисления в скобках, после чего сложение с числом 5. На исходное значение в этом случае оно не повлияет.
Рассмотрим пример, который покажет, как при изменении положения скобок может измениться результат. Если дано выражение 5+2·4, видно, что вначале выполняется умножение, после чего сложение. Когда выражение будет иметь вид (5+2)·4, то вначале выполнится действие в скобках, после чего произведется умножение. Результаты выражений будут отличаться.
Выражения могут содержать несколько пар скобок, тогда выполнения действий начинаются с первой. В выражении вида (4+5·2)−0,5:(7−2):(2+1+12) видно, что первым делом выполняются действия в скобках, после чего деления, а в конце вычитание.
Существуют примеры, где имеются вложенные сложные скобки вида 4·6-3+8:2 и 5·(1+(8-2·3+5)-2))-4. Тогда начинается выполнение действий с внутренних скобок. Далее производится продвижение к внешним.
Пример 3
Если имеется выражение 4·6-3+8:2, тогда очевидно, что в первую очередь выполняются действия в скобках. Значит, следует отнять 3 от 6, умножить на 4 и прибавить 8. В конце следует разделить на 2. Только так можно получить верный ответ.
На письме могут быть использованы скобки разных размеров. Это делается для удобства и возможности отличия одной пары от другой. Внешние скобки всегда большего размера, чем внутренние. То есть получаем выражение вида 5-1:2+12+3-13·2·3-4. Редко встречается применение выделенных скобок (2+2·(2+(5·4−4)))·(6:2−3·7)·(5−3) или применяют квадратные, например, [3+5·(3−1)]·7 или фигурные {5+[7−12:(8−5):3]+7−2}:[3+5+6:(5−2−1)].
Перед тем, как приступить к решению, важно правильно определить порядок действий и разобрать все необходимые пары скобок. Для этого следует добавлять разные виды скобок или менять их цвет. Пометка скобки другим цветом удобна для решения, но занимает много времени, поэтому на практике чаще всего применяют круглые, фигурные и квадратные скобки.
Отрицательные числа в скобках
Если необходимо изобразить отрицательные числа, тогда применяют круглые скобки в выражении. Такая запись, как 5+(−3)+(−2)·(−1), 5+-23, 257-5+-673·(-2)·-3,5 предназначена для того, чтобы упорядочить отрицательные числа в выражении.
Скобки не ставятся для отрицательного числа того, когда оно располагается в начале любого выражения или дроби. Если имеем пример вида −5·4+(−4):2, то очевидно, что знак минуса перед 5 можно не заключать в скобки, а при 3-0,4-2,2·3+7+3-1:2 число 2,2 записано вначале, значит скобки также не нужны.