Строго доказывается она путём двукратного интегрирования простого дифференциального уравнения x'' = a = const при начальных условиях x(0) = x0, x'(0) = v(0).
Из простых соображений, доступных девятикласснику: сначала вводится понятие мгновенной скорости, т. е. скорости в данной точке траектории. Это скорость, которая практически не отличается от средней скорости на малом участке траектории. И вот тут школьник практически впервые сталкивается с понятием предела функции в точке: участок должен быть не просто малым, а средняя скорость должна стремиться к какой-то фиксированной величине, т. е. отличаться от неё как угодно мало при достаточном выборе участка траектории, либо временного промежутка. В последнем случае говорят о мгновенной скорости тела (материальной точки) в данный момент времени.
В случае равноускоренного движения отношение изменения скорости (мгновенной) к промежутку времени, в течение которого это изменение произошло, есть величина постоянная, равная ускорению, а сам график скорости представляет собой прямую линию, проходящую через точку (0; v0), что означает, что скорость в начальный момент времени равна v0. Тогда на малом временном промежутке, где средняя скорость примерно равна мгновенной (любому значению скорости на этом промежутке) произведение этого значения скорости на длину соответствующего временного промежутка равна пути, пройденному телом за данный промежуток времени, а общий путь примерно равен сумме таких произведений на каждом малом временном промежутке, на которые разбивается общее время в пути. В случае когда длина таких временных промежутков стремится к нулю, примерное значение пути становится точным.
С другой стороны тот же предел суммы произведений равен площади соответствующей фигуры под графиком скорости. Но данная фигура представляет собой прямоугольную трапецию (или в случае v0 = 0 прямоугольный треугольник), у которой левое основание равно v0, правое равно v0 + at, а высота равна t, поэтому площадь этой фигуры равна произведению полусуммы оснований на высоту, т. е. ((v0 + v0 + at)/2)*t = (2v0t + at^2)/2 = v0t + at^2/2. При условии, что начальная координата равна x0, приращение координаты равно найденному значению пути, а тогда конечная координата в результате равна x = x0 + v0t + at^2/2. Таким образом и получается формула зависимости координаты тела от времени при равноускоренном движении.
Вот иллюстрация происходящего: