Что означает число ПИ?
Пи=3,1415926535897932384626433832795…=3,14
(произносится «пи» ) — математическая константа, выражающая отношение длины окружности к длине её диаметра. Обозначается буквой греческого алфавита «пи» . Трансцендентность и иррациональность
иррациональное число, то есть его значение не может быть точно выражено в виде дроби м/н, где м и н — целые числа. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа π была впервые доказана Иоганном Ламбертом в 1767 году путём разложения числа в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел π и π2.
трансцендентное число, это означает, что оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа пи была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году
Поскольку в геометрии Евклида площадь круга и длина окружности являются функциями числа π, то доказательство трансцендентности π положило конец спору о квадратуре круга, длившемуся более 2,5 тысяч лет.
Отношение длины окружности к диаметру
нехочу огарчать но я не знаю ааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааааа
лол
Свойства
Трансцендентность и иррациональность
\pi — иррациональное число, то есть его значение не может быть точно выражено в виде дроби m/n, где m и n — целые числа. Следовательно, его десятичное представление никогда не заканчивается и не является периодическим. Иррациональность числа \pi была впервые доказана Иоганном Ламбертом в 1761 году [3] путём разложения числа \frac{e-1}{2^n} в непрерывную дробь. В 1794 году Лежандр привёл более строгое доказательство иррациональности чисел \pi и \pi^2.
\pi — трансцендентное число, то есть оно не может быть корнем какого-либо многочлена с целыми коэффициентами. Трансцендентность числа \pi была доказана в 1882 году профессором Кёнигсбергского, а позже Мюнхенского университета Линдеманом. Доказательство упростил Феликс Клейн в 1894 году [4].
Поскольку в евклидовой геометрии площадь круга и длина окружности являются функциями числа \pi, то доказательство трансцендентности \pi положило конец спору о квадратуре круга, длившемуся более 2,5 тысяч лет.
В 1934 году Гельфонд доказал трансцендентность числа e^\pi[5]. В 1996 году Юрий Нестеренко доказал, что для любого натурального n числа \pi и e^{\pi\sqrt n} алгебраически независимы, откуда, в частности, следует трансцендентность чисел \pi+e^\pi,\pi e^\pi и e^{\pi\sqrt n}[6][7].
\pi является элементом кольца периодов (а значит, вычислимым и арифметическим числом). Но неизвестно, принадлежит ли 1/\pi к кольцу периодов.
Соотношения
Известно много формул для вычисления числа \pi:
Формула Виета для приближения числа π (англ.) русск.:
\frac2\pi=
\frac{\sqrt{2}}2\cdot
\frac{\sqrt{2+\sqrt2}}2\cdot
\frac{\sqrt{2+\sqrt{2+\sqrt2}}}2 \cdot \ldots
Это первое известное явное представление \pi с бесконечным числом операций. Применив тождество \sin(2\cdot\theta)=2\cdot\sin\theta\cdot\cos\theta рекурсивно и перейдя к пределу, получим
\phi\cdot \cos\tfrac\phi2\cdot\cos\tfrac\phi4\cdots = \sin \phi
остаётся подставить \phi=\tfrac\pi2 и воспользоваться формулой для косинуса удвоенного угла.
Формула Валлиса:
\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2}
Ряд Лейбница:
\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \cdots = \frac{\pi}{4}
Другие ряды:
\begin{align}
\pi &= \tfrac12\sum_{k=0}^{\infty}\tfrac1{16^k}\left(\tfrac8{8k+2} + \tfrac4{8k+3} + \tfrac4{8k+4} - \tfrac1{8k+7}\right)
\\ &= \tfrac14\sum_{k=0}^{\infty}\tfrac1{16^k}\left(\tfrac8{8k+1} + \tfrac8{8k+2} + \tfrac4{8k+3} - \tfrac2{8k+5} - \tfrac2{8k+6} - \tfrac1{8k+7}\right)
\\ &= \;\;\sum_{k=0}^{\infty}\tfrac{(-1)^k}{4^k}\left(\tfrac2{4k+1} + \tfrac2{4k+2} + \tfrac1{4k+3}\right)
\end{align}
\pi=2 \sqrt{3} \sum \limits_{k=0}^{\infty}\frac{(-1)^k}{\, 3^k \, (2k+1)}
Кратные ряды:
\pi=8\sum\limits_{k=1}^{\infty}\sum\limits_{m=1}^{\infty}\frac{1}{(4m-2)^{2k}}=4\sum\limits_{k=1}^{\infty}\sum\limits_{m=1}^{\infty}\frac{m^2-k^2}{(m^2+k^2)^2}=\sqrt[4\,\,]{360 \sum \limits_{k=1}^{\infty}\sum \limits_{m=1}^k\frac{1}{m(k+1)^3}}
Пределы:
\pi=\lim \limits_{m\rightarrow \infty }{\frac { (m!)^{4}\,{2}^{4m}}{\left[ (2m )! \right] ^{2}\,m}}
\pi= \sqrt{\frac{6}{\lim \limits_{n\to\infty}\prod \limits_{k=1 \atop p_k \in \mathbf{P}}^{n}\,\left ( 1-\frac{1}{p_{k}^2}\right ) }}\quad \to здесь p_k \, - простые числа
Тождество Эйлера:
e^{i \pi} + 1 = 0\;
Другие связи между константами:
\frac{\pi}{e}=2 \prod \limits_{k=1}^{\infty}\left (\frac{2k+1}{2k-1} \right )^{2k-1} \left (\frac{k}{k+1} \right )^{2k}
\pi \cdot e = 6 \prod \limits_{k=1}^{\infty}\left ( \frac{2k+3}{2k+1}\right )^{2k+1} \left (\frac{k}{k+1} \right )^{2k}
Т. н. «интеграл Пуассона» или «интеграл Гаусса»
\int\limits_{-\infty}^{+\infty}\ e^{-x^2}{dx} = \sqrt{\pi}
Интегральный синус:
\int\limits_{-\infty }^{+\infty }{\frac{\sin x}{x