Докажите, что сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов двух смежных сторон.
открыла википедию. . . Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон: пусть а — длина стороны AB, b — длина стороны BC, d1 и d2 — длины диагоналей; тогда d_1^2+d_2^2 = 2(a^2 + b^2). Доказательства Проведя диагональ BD, мы получим два треугольника: ABD и BCD, которые равны, т. к. одна сторона у них общая, а соответственные углы при стороне BD равны как накрест лежащие при параллельных прямых AB | | CD, BC | | AD, где BD - секущая. Из равенства треугольников следует: | AB | = | CD | , | AD | = | BC | и ∠A = ∠С Противоположные углы ∠B и ∠D также равны, т. к. они представляют собой суммы равных углов. Наконец, углы, прилежащие к одной стороне, например ∠A и ∠D, дают в сумме 180°, так как это углы внутренние односторонние при параллельных прямых. По теореме косинусов: d_1^2 = a^2 + b^2 - 2ab\cos\angle A. Поскольку \cos\angle D = -\cos\angle A, то d_2^2 = a^2 + b^2 + 2ab\cos\angle A. Складывая полученные равенства: d_1^2+d_2^2 = 2(a^2 + b^2).