Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

докажите свойство вертикальных углов

Екатерина Черепенина Ученик (104), закрыт 1 год назад
Лучший ответ
Tiger40k Мастер (1185) 10 лет назад
Два угла называют вертикальными, если стороны одного угла являются продолжениями сторон другого.
Теперь доказательство теоремы:
Вертикальные углы равны!

Представь углы 1, 3 и 2, 4. Угол 2 является смежным как с углом 1 так и с углом 3. Два угла, у которых одна сторона общая а две другие являются
продолжениями одна другой, называються смежными. По свойству смежных углов < 1+<2=180градусов. <3+<2=180градусов

Отсюда получаем <1=180-<2. <3=180-<2 таким образом, градусные меры углов 1 и 3 равны.
Значит и сами углы равны. Теорема доказана
Остальные ответы
вероника чумакова Ученик (209) 6 лет назад
Два угла называются вертикальными, если стороны одного составляют продолжение сторон другого.

Так, при пересечении двух прямых AB и СD образуются две пары вертикальных углов: AOD и СOB; AOС и DOB .

Теорема.

Два вертикальных угла равны.

Свойства смежных и вертикальных углов.

Пусть даны два вертикальных угла: AOD и СOB т. е. OB есть продолжение OA, а OС продолжение OD.

Требуется доказать, что AOD = СOB.

По свойству смежных углов можем написать:

AOD + DOB = 2d

DOB + BOС = 2d

Значит: AOD + DOB = DOB + BOС.

Если вычесть из обеих частей этого равенства по углу DOB, получим:

AOD = BOС, что и требовалось доказать.

Аналогично докажем, что AOС = DOB.
на рисунке поменяйте В и С местами
Мансур Жансерикулы Ученик (105) 1 год назад
Два угла называются вертикальными, если стороны одного составляют продолжение сторон другого.

Так, при пересечении двух прямых AB и СD образуются две пары вертикальных углов: AOD и СOB; AOС и DOB .

Теорема.

Два вертикальных угла равны.

Свойства смежных и вертикальных углов.

Пусть даны два вертикальных угла: AOD и СOB т. е. OB есть продолжение OA, а OС продолжение OD.

Требуется доказать, что AOD = СOB.

По свойству смежных углов можем написать:

AOD + DOB = 2d

DOB + BOС = 2d

Значит: AOD + DOB = DOB + BOС.

Если вычесть из обеих частей этого равенства по углу DOB, получим:

AOD = BOС, что и требовалось доказать.

Аналогично докажем, что AOС = DOB.
на рисунке поменяйте В и С местами
Похожие вопросы