Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Что такое АКСИОМА ?

милана давлетшина Ученик (120), на голосовании 10 лет назад
Голосование за лучший ответ
В Прошлом Мыслитель Оракул (54290) 10 лет назад
То, что не требует доказательств
Натали Мастер (1888) 10 лет назад
утверждение, принятое без доказательства
CorTEz flam Знаток (426) 10 лет назад
Аксио́ма (др. -греч. ἀξίωμα — утверждение, положение), постула́т — исходное положение какой-либо теории, принимаемое в рамках данной теории истинным без требования доказательства и используемое при доказательстве других её положений, которые, в свою очередь, называются теоремами [1].

Необходимость в принятии аксиом без доказательств следует из индуктивного соображения: любое доказательство вынуждено опираться на какие-либо утверждения, и если для каждого из них требовать своих доказательств, цепочка получится бесконечной. Чтобы не уходить в бесконечность, нужно где-то эту цепочку разорвать — то есть какие-то утверждения принять без доказательств, как исходные. Именно такие, принятые в качестве исходных, утверждения и называются аксиомами. [2]

В современной науке вопрос об истинности аксиом, лежащих в основе какой-либо теории, решается либо в рамках других научных теорий, либо посредством интерпретации данной теории [3].

Аксиоматиза́ция теории — явное указание конечного или счётного, рекурсивно перечислимого (как, например, в аксиоматике Пеано) набора аксиом и правил вывода. После того как даны названия изучаемым объектам и их основным отношениям, а также аксиомы, которым эти отношения должны подчиняться, всё дальнейшее изложение должно основываться исключительно на этих аксиомах, и не опираться на обычное конкретное значение этих объектов и их отношений.

Выбор аксиом, которые составляют основу конкретной теории, не является единственным. Примеры различных, но равносильных наборов аксиом можно встретить в математической логике и Евклидовой геометрии.

Набор аксиом называется непротиворечивым, если исходя из аксиом набора, пользуясь правилами логики, нельзя прийти к противоречию, то есть доказать одновременно и некое утверждение, и его отрицание.

Австрийский математик Курт Гёдель доказал «теоремы о неполноте», согласно которым всякая система математических аксиом (формальная система) начиная с определённого уровня сложности либо внутренне противоречива, либо неполна (то есть в достаточно сложных системах найдётся хотя бы одно высказывание, ни истинность, ни ложность которого не может быть доказана средствами самой этой системы). [4]
██████████████ Мастер (2214) 10 лет назад
Аксиома (греч. axioma), положение, принимаемое без логического доказательства в силу непосредственной убедительности; истинное исходное положение теории.
Похожие вопросы