Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

где находится центр окружности описанной около трапеции

Ворпа Вшгрп Ученик (151), на голосовании 8 лет назад
Голосование за лучший ответ
Dr.PST Оракул (89021) 8 лет назад
если ОКОЛО - да где угодно
Ворпа ВшгрпУченик (151) 8 лет назад
Ну а если вокруг
marat aminov Просветленный (33105) 8 лет назад
окружность можно описать только около равнобедренной трапеции. центр описанной окружности находится на прямой mn проходящей через центры оснований, а радиус окружности описанной около равнобедренной трапеции с основаниями a и b (b>a), боковой стороной c и диагональю d равен R=bcd/4√[p(p-b)(p-c)(p-d)], где р=(b+c+d)/2. точка пересечения дуги такого радиуса с центром в любой из вершин трапеции с прямой mn и есть центр описанной окружности.
PS. если боковая сторона и диагональ равнобедренной трапеции образуют прямой угол, то центр описанной окружности лежит в центре большего основания.
Ольга Гаврилова Знаток (435) 7 лет назад
Радиус окружности, описанной около трапеции, можно найти как радиус окружности, описанной около из одного из двух треугольников, на которые трапецию делит ее диагональ.
Похожие вопросы