Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

как рассчитывается погрешность прямых измерений? как рассчитывается погрешность прямых измерений

Антон Тёплый Ученик (97), на голосовании 7 лет назад
Голосование за лучший ответ
Bin Bong Ученик (171) 7 лет назад
Расчет погрешности измерений

Измерения называются прямыми, если значения величин определяются приборами непосредственно (например, измерение длины линейкой, определение времени секундомером и т. д.). Измерения называютсякосвенными, если значение измеряемой величины определяется посредством прямых измерений других величин, которые связаны с измеряемой определенной зависимостью.

Случайные погрешности при прямых измерениях
Абсолютная и относительная погрешность. Пусть проведеноNизмерений одной и той же величиныxв отсутствии систематической погрешности. Отдельные результаты измерений имеют вид: x1,x2, …,xN. В качестве наилучшего выбирается среднее значение измеренной величины:

.(1)

Абсолютной погрешностьюединичного измерения называется разность вида:

.

Среднее значение абсолютной погрешности Nединичных измерений:

(2)

называется средней абсолютной погрешностью.

Относительной погрешностью называется отношение средней абсолютной погрешности к среднему значению измеряемой величины:

.(3)

Приборные погрешности при прямых измерениях
Если нет особых указаний, погрешность прибора равна половине его цены деления (линейка, мензурка).

Погрешность приборов, снабженных нониусом, равна цене деления нониуса (микрометр – 0,01 мм, штангенциркуль – 0,1 мм).

Погрешность табличных величин равна половине единицы последнего разряда (пять единиц следующего порядка за последней значащей цифрой).

Погрешность электроизмерительных приборов вычисляется согласно классу точности С, указанному на шкале прибора:

Например: и,

где Umax и Imax – предел измерения прибора.

Погрешность приборов с цифровой индикацией равна единице последнего разряда индикации.

После оценки случайной и приборной погрешностей в расчет принимается та, значение которой больше.

Вычисление погрешностей при косвенных измерениях
Большинство измерений являются косвенными. В этом случае искомая величина Х является функцией нескольких переменных а, b, c…, значения которых можно найти прямыми измерениями: Х = f(a,b,c…).

Среднее арифметическое результата косвенных измерений будет равно:

X = f(a,b,c…).

Одним из способов вычисления погрешности является способ дифференцирования натурального логарифма функции Х = f(a,b,c…). Если, например, искомая величина Х определяется соотношением Х = , то после логарифмирования получаем: lnX = lna + lnb + ln(c+d).

Дифференциал этого выражения имеет вид:

.

Применительно к вычислению приближенных значений его можно записать для относительной погрешности в виде:

 = . (4)

Абсолютная погрешность при этом рассчитывается по формуле:

Х = Х(5)

Таким образом, расчет погрешностей и вычисление результата при косвенных измерениях производят в следующем порядке:

1) Проводят измерения всех величин, входящих в исходную формулу для вычисления конечного результата.

2) Вычисляют средние арифметические значения каждой измеряемой величины и их абсолютные погрешности.

3) Подставляют в исходную формулу средние значения всех измеренных величин и вычисляют среднее значение искомой величины:

X = f(a,b,c…).

4) Логарифмируют исходную формулу Х = f(a,b,c…) и записывают выражение для относительной погрешности в виде формулы (4).

5) Рассчитывают относительную погрешность  = .

6) Рассчитывают абсолютную погрешность результата по формуле (5).

7) Окончательный результат записывают в виде:

Х = ХсрХ
 = …%
Абсолютные и относительные погрешности простейших функций приведены в таблице:

Функция
Абсолютная
погрешность
Относительная
погрешность
a+b
a+b

a-b
a+b

ab
ab+ba

sin a

cos a
Похожие вопросы