Наталия Тузина
Мудрец
(17280)
4 года назад
x^2 - 9x + 11 = 0
По теореме Виета:
x^2 + px + q = 0 -------> x1+x2= -p; x1*x2 = q
=>
{ x1 + x1 = 9;
{ x1 * x2 = 11
=>
1) 1\x1 + 1\x2 = (x1+x2)\x1*x2 = 9\11
2) x1^2*x2 + x1*x2^2 =
= x1*x2*(x1+x2) = 11*9 = 99
3) x1^2 + x2^2 =
= x1^2 + (2x1*x2) + x2^2 - (2*x1*x2) =
= (x1+x2) - 2*x1*x2 =
= 9 - 2*11 = -13
4) x1^3 + x2^3 =
= (x1+x2)(x1^2 - x1*x2 + x2^2) =
= (x1+x2) * ((x1^2 + x2^2) - x1*x2) = ---------> x1^2+x2^2 = -13 (из пункта 3)
= 9 * ((-13) - 11) = 9 * (-24) = - 216
5) (x1 - x2^2 =
= x1^2 - 2xy + x2^2 = (x1^2+x2^2) - 2xy = (-13) - 2*11 = -13 - 22 = - 35
6) 1\x1^2 + 1\y1^2 =
= (x1^2 + y1^2) \ (x1*x2)^2 =
= (-13) \ 11^2 = - 13\121