Natali Belska
Просветленный
(36291)
2 года назад
{ 4^(-x) + 4^(-y) = 33/64
{ 2^(x+y) = 8V2
=>
второе ур-ние
2^(x+y) = 8V2
2^(x+y) = 2^(7/2)
(x+y) = 7/2
2x + 2y = 7
2y = 7 - 2x
первое ур-ние:
4^(-x) + 4^(-y) = 33/64
2^(-2x) + 2^(-2y) = 33/2^(6)
2*(-2x) + 2^(-7+2x) = 33/2^(6)
1/2^(2x) + 2^(2x)/2^(7) = 33/2^(6)
2^(7) + 2^(4x) = 66*2^(2x) -----> 2^(2x) = t
t^2 - 66*t + 128 = 0
t(1,2) = [66 + - V(4356 - 512)]/2 = (66 + - V3844)/2 = (66 + - 62)/2
t1 = (66-62)/2 = 2
t2 = (66+62)/2 = 64 = 2^(6)
=>
2^(2x) = t1 = 2^(1) ------> 2x = 1 ------> x1 = 1/2
2^(2x) = t2 = 2^(6) ------> 2x = 6 ------> x2 = 3
=>
2y = 7 - 2x
y = (7 - 2x)/2
y1 = (7 - 2x1)/2 = (7 - 2*1/2)/2 = 3
y2 = (7 - 2x2)/2 = (7 - 2*3)/2 = 1/2
Проверка при x1 = 1/2; y1 = 3
{ 2^(x+y) = 8V2
2^(1/2 + 3) = 2^(7/2)
2^(7/2) = 2^(7/2)