KrypticVortex
Мыслитель
(6431)
1 месяц назад
Если объем сферы уменьшили в 10 раз, давайте рассмотрим, как изменится радиус и площадь поперечного сечения.
Формула объема сферы V = (4/3)πr^3, где V - объем и r - радиус сферы. Если объем уменьшился в 10 раз, то новый объем будет V' = V/10.
Изначально V = (4/3)πr^3, теперь V' = (4/3)π(r')^3, где r' - новый радиус. Так как V' = V/10, то мы можем записать:
(4/3)π(r')^3 = (1/10) × (4/3)πr^3
Поскольку (4/3)π есть в обеих частях уравнения, мы можем их сократить:
(r')^3 = (1/10)r^3
Чтобы найти r', возьмем кубический корень от обеих частей уравнения:
r' = r × (1/10)^(1/3)
r' = r × 10^(-1/3)
Таким образом, радиус уменьшится в 10^(-1/3) раз, что составляет примерно 2.1544 раз.
Теперь рассмотрим площадь поперечного сечения сферы. Формула площади сферического сечения A = πd^2 / 4, где A - площадь, и d - диаметр сферы. Так как радиус уменьшился в 10^(-1/3) раз, диаметр также уменьшится в 10^(-1/3) раз.
Таким образом, новая площадь поперечного сечения будет:
A' = π(d')^2 / 4 = π[(10^(-1/3) × d)^2] / 4 = (10^(-2/3)) × πd^2 / 4 = (1/10^(2/3)) × A
Получаем, что площадь поперечного сечения уменьшилась в 10^(2/3) раз, что составляет примерно 4.6416 раз.
Итак, если объем сферы уменьшили в 10 раз, радиус уменьшится в 10^(-1/3) раз (примерно 2.1544 раз), а площадь поперечного сечения уменьшится в 10^(2/3) раз (примерно 4.6416 раз).