Задача по физике про периоды обращения вокруг солнца.
Период обращения Юпитера вокруг Солнца в 17 раз больше соответствующего периода для Земли. Считая орбиты планет круговыми, найти: во сколько раз расстояние от Юпитера до Солнца превышает расстояние от Земли до Солнца.
в 17^(2/3) = 6.61 раз
кстати, у тебя в условии враньё. период обращения Юпитера не 17 лет, а 12.
___________________
2023-06-05_17:09:33
Роль центростремительной силы играет сила гравитационного приятяжения. Запиши это в виде формулок для двух систем: Земля-Солнце и Юпитер-Солнце, и из этих равенств сможете получить то, что вас спрашивают.
Везде ниже v(r) - это орбитальная скорость при радиусе орбиты r.
Ньютон вывел закон всемирного тяготения из законов Кеплера, но можно и наоборот.
v^2 ~ 1/r по вириальной теореме, но можно и без вириальной теоремы обойтись.
Центростремительное ускорение v^2/r пропоционально 1/r^2 ('это следует напрямую из обычной формулировки закона всемирного тяготения через силы и второго закона Ньютона), поэтому v^2 ~ 1/r => v ~ 1/sqrt(r), период T ~ r/v ~ r*sqrt(r) =>
T^2 ~ r^3, это сужение третьего закона Кеплера на круговые орбиты.
Т.е. квадраты периодов обращения планет относятся так же, как кубы радиусов орбит.
По-хорошему, ты бы должен это подробно расписать. Законы Кеплера ты, наверное, не знаешь (т.к. иначе тебе ограничение на строго круговые орбиты не нужно было бы), с центробежными силами в данном случае тоже не знаком - здесь это один из видов вспомогательных псевдосил инерции Эйлера, их вводят исключительно для удобства работы с неинерциальными системами отсчета, это класс 10-й, наверное.
Если период обращения Юпитера вокруг Солнца в 17 раз больше, чем период обращения Земли, то можно предположить, что их расстояния до Солнца связаны тем же коэффициентом. То есть:
Расстояние от Юпитера до Солнца / Расстояние от Земли до Солнца = 17
Таким образом, расстояние от Юпитера до Солнца превышает расстояние от Земли до Солнца в 17 раз.