Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Как решить это уравнение

миша михеев Знаток (250), на голосовании 14 часов назад
Из уравнения случайного высокочастотного воздействия по медленной составляющей найдем x0(t), пользуясь которым вычислим математическое ожидание амплитуды автоколебаний
Голосование за лучший ответ
l ol Гуру (3199) 1 месяц назад
А[х_0(t)], А - функция или константа? Если константа - за скобки и интегрируешь. Если функция, то.. не знаю, как интеграл этот брать.
Antipod86 Мастер (1333) 1 месяц назад
Интеграл от "е в степени икс квадрат" не берётся. По крайней мере, в явном виде.
черная кошка Знаток (275) 4 недели назад
а) Для определения параметра A найдем интеграл плотности вероятности от 1 до 4 и приравняем его к 1:
∫A*x^2 dx = 1
A * (x^3 / 3) | from 1 to 4 = 1
A * ((4^3 / 3) - (1^3 / 3)) = 1
A * (64/3 - 1/3) = 1
A * (63/3) = 1
A = 1/63

б) Функция распределения F(x) для данной плотности вероятности определяется следующим образом:

F(x) = 0, x ≤ 1
F(x) = ∫(1/63) * x^2 dx | from 1 to x
F(x) = (1/63) * (x^3 / 3 - 1/3), 1 < x ≤ 4
F(x) = 1, x > 4

в) Математическое ожидание, медиана, МX, дисперсия случайной величины X для данной плотности вероятности:

Мо = ∫x * f(x) dx | from 1 to 4
Мо = ∫(1/63) * x^3 dx | from 1 to 4
Мо = (1/63) * ((4^4 / 4) - (1^4 / 4))
Мо = (1/63) * (64 - 1)
Мо = 63/63 = 1

Медиана Me = 2

МX = Мо = 1

D(X) = ∫(x - Мо)^2 * f(x) dx | from 1 to 4
D(X) = ∫(x - 1)^2 * (1/63) x^2 dx | from 1 to 4
D(X) = (1/63) ∫(x - 1)^2 * x^2 dx | from 1 to 4

г) Для вычисления вероятности того, что в четырех независимых испытаниях случайная величина X попадет ровно два раза в интервал (0; 2) нужно использовать формулу Бернулли. Вероятность такого события равна:
P(X = 2) = C(4,2) * (1/63)^2 * (62/63)^2

Построим графики функций f(x) и F(x) для наглядности.
Похожие вопросы