черная кошка
Знаток
(260)
8 месяцев назад
а) Для определения параметра A найдем интеграл плотности вероятности от 1 до 4 и приравняем его к 1:
∫A*x^2 dx = 1
A * (x^3 / 3) | from 1 to 4 = 1
A * ((4^3 / 3) - (1^3 / 3)) = 1
A * (64/3 - 1/3) = 1
A * (63/3) = 1
A = 1/63
б) Функция распределения F(x) для данной плотности вероятности определяется следующим образом:
F(x) = 0, x ≤ 1
F(x) = ∫(1/63) * x^2 dx | from 1 to x
F(x) = (1/63) * (x^3 / 3 - 1/3), 1 < x ≤ 4
F(x) = 1, x > 4
в) Математическое ожидание, медиана, МX, дисперсия случайной величины X для данной плотности вероятности:
Мо = ∫x * f(x) dx | from 1 to 4
Мо = ∫(1/63) * x^3 dx | from 1 to 4
Мо = (1/63) * ((4^4 / 4) - (1^4 / 4))
Мо = (1/63) * (64 - 1)
Мо = 63/63 = 1
Медиана Me = 2
МX = Мо = 1
D(X) = ∫(x - Мо)^2 * f(x) dx | from 1 to 4
D(X) = ∫(x - 1)^2 * (1/63) x^2 dx | from 1 to 4
D(X) = (1/63) ∫(x - 1)^2 * x^2 dx | from 1 to 4
г) Для вычисления вероятности того, что в четырех независимых испытаниях случайная величина X попадет ровно два раза в интервал (0; 2) нужно использовать формулу Бернулли. Вероятность такого события равна:
P(X = 2) = C(4,2) * (1/63)^2 * (62/63)^2
Построим графики функций f(x) и F(x) для наглядности.