Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Хелп с информатикой

Ярик Мартенс Ученик (159), на голосовании 11 месяцев назад
решить через питон
Голосование за лучший ответ
Антон Сэймайнэймов Ученик (214) 12 месяцев назад
Ну это на компе надо делать
Ярик МартенсУченик (159) 12 месяцев назад
правда? я не знал)
Antipod86 Гуру (2643) 12 месяцев назад
В цикле от 1 до <количество чисел> анализируешь каждое входящее число на соответствие пунктам 1, 2 или 3. Тут даже массив не нужен.
черная кошка Знаток (251) 12 месяцев назад
а) Для определения параметра A найдем интеграл плотности вероятности от 1 до 4 и приравняем его к 1:
∫A*x^2 dx = 1
A * (x^3 / 3) | from 1 to 4 = 1
A * ((4^3 / 3) - (1^3 / 3)) = 1
A * (64/3 - 1/3) = 1
A * (63/3) = 1
A = 1/63

б) Функция распределения F(x) для данной плотности вероятности определяется следующим образом:

F(x) = 0, x ≤ 1
F(x) = ∫(1/63) * x^2 dx | from 1 to x
F(x) = (1/63) * (x^3 / 3 - 1/3), 1 < x ≤ 4
F(x) = 1, x > 4

в) Математическое ожидание, медиана, МX, дисперсия случайной величины X для данной плотности вероятности:

Мо = ∫x * f(x) dx | from 1 to 4
Мо = ∫(1/63) * x^3 dx | from 1 to 4
Мо = (1/63) * ((4^4 / 4) - (1^4 / 4))
Мо = (1/63) * (64 - 1)
Мо = 63/63 = 1

Медиана Me = 2

МX = Мо = 1

D(X) = ∫(x - Мо)^2 * f(x) dx | from 1 to 4
D(X) = ∫(x - 1)^2 * (1/63) x^2 dx | from 1 to 4
D(X) = (1/63) ∫(x - 1)^2 * x^2 dx | from 1 to 4

г) Для вычисления вероятности того, что в четырех независимых испытаниях случайная величина X попадет ровно два раза в интервал (0; 2) нужно использовать формулу Бернулли. Вероятность такого события равна:
P(X = 2) = C(4,2) * (1/63)^2 * (62/63)^2

Построим графики функций f(x) и F(x) для наглядности.
Похожие вопросы