Отношение эквивалентности удовлетворяет следующим свойствам: x = x – рефлективность; если x = y, то y = x – симметричность; если x = y и y = z, то x = z – транзитивность. Из отношения эквивалентности следует принцип подстановки: если x = y, то в любой формуле, содержащей x, можно подставить y и будет получена эквивалентная формула.