Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Какое максимальное количество чисел мог написать Петя?

Варвара Старцева Ученик (90), на голосовании 1 неделю назад
Петя записал на доске несколько различных двузначных чисел так, чтобы сумма никаких двух из них не была равна 84. Какое максимальное количество чисел мог написать Петя?

Как это решить? Можно не только ответ?
Голосование за лучший ответ
Razny Flamingo Гуру (4452) 1 месяц назад
Отрицательные считаются?
Варвара СтарцеваУченик (90) 1 месяц назад
Наверное, нет. Задача для 5 класса
Razny Flamingo Гуру (4452) Варвара Старцева, в началке вообще зажания конченые в последнее время. Было 2 козла. Сколько? На размышления даётся 30 секунд.
Sergey V. Voronin Искусственный Интеллект (292120) 1 месяц назад
В ёкселе это решить удобно. По Х и У -- двузначные числа, в таблице -- суммы. Внизу счетЕсли.
Юрий Семыкин Искусственный Интеллект (204850) 1 месяц назад
"Несколько различных", но допускаются одинаковые, то бесконечно много, например {20, 11, 17} в любом количестве.
Если все обязательно различные, то 10..42 (33 шт) можно свободно записывать, и 73..99 (27 шт).
любое число из диапазона 43..72 тоже можно добавить в список, но! исключив 84-это число.
Поэтому ответ 60.
N!K.$.onЗнаток (366) 1 месяц назад
А почему вы 73 и 74 сюда включили? у вас в ряду от 10 до 42 есть 10 и 11, которые в сумме с ними дают 84. Второй ряд д.б. от 75 до 99 включительно, т.е. 25, а не 27. И в итоге 58 чисел
Юрий Семыкин Искусственный Интеллект (204850) N!K.$.on, ошибся, был невниматен, наверно. Вы, там сами разберитесь как-нибудь.
Jules Просветленный (36076) 1 месяц назад
Если положительные расматриваем, то только 25 из 90 возможных (от 10 до 99)
Вот те которые не подходят:
10+74
11+73
12+72
13+71
14+70
15+69
16+68
17+67
18+66
19+65
20+64
21+63
22+62
23+61
24+60
25+59
26+58
27+57
28+56
29+55
30+54
31+53
32+52
33+51
34+50
35+49
36+48
37+47
38+46
39+45
40+44
41+43
JulesПросветленный (36076) 1 месяц назад
Сорян, 8 чисел только он мог записать!)
JulesПросветленный (36076) 1 месяц назад
Гоню! 26 чисел он мог только изобразить. Извините, решал разложением на слогаемые, так чтобы слогаемые сверху вниз увеличивались на +1 и снизу вверх аналогично.
Рустам Искендеров Искусственный Интеллект (140836) 1 месяц назад
Все числа натуральные, различные. Кажется, всего 58:
Напр., 1 -- 42 (шт. 42), 84 -- 99 (шт. 16)
Рустам ИскендеровИскусственный Интеллект (140836) 1 месяц назад
Как правило, ошибся: числа от 1 по 9 недвухзначные. Подумаю ещё.
Рустам ИскендеровИскусственный Интеллект (140836) 1 месяц назад
Вроде суммарно 58 чисел сохраняется:
10 -- 42 (шт. 33), 75 --99 (шт.25).
JulesПросветленный (36076) 1 месяц назад
Да. 58!Если из тех неподходящих, что я в своём ответе привёл, написать ровно половину и приписать 26 подходящих 42, 75, 76, 77 и так далее до 99, то получим 58 чисел.
Рустам Искендеров Искусственный Интеллект (140836) Jules, Видать, так оно и есть.
Зыня Зерцало Оракул (77729) 1 месяц назад
Нужно взять эту доску, и прикинуть - сколько туда влезет с его почерком. Не имея доски (и Пети) - данную задачу решить невозможно.
Христич Геннадий Ученик (137) 1 месяц назад
Всего 2-значных чисел 90 (от 10 до 99).
сумму 84 могут дать попарно числа из массивов {10..41} и {74..43}, соответственно, одну из тих пар нужно "вырезать". Итого -32.
Число 42 остается, т.к. 2 раза записано быть не может.
И все числа от 74 до 99 тоже - т.к. ни с каким другим двузначным числом не могут дать сумму 84.
Итого 90-32 = 58
JulesПросветленный (36076) 1 месяц назад
Все числа от 74 до 10 в обратном порядке не подходят, их будет 64 шт., остаются 26.
JulesПросветленный (36076) 1 месяц назад
42 исключаем из списка
jokerУченик (167) 1 месяц назад
И все числа от 74 до 99 тоже - т.к. ни с каким другим двузначным числом не могут дать сумму 84.
Серьезно? А как же 74 и 10?
joker, от 74= "более 74" в данном случае . Не включительно
N!K.$.on Знаток (366) 1 месяц назад
58 чисел : 25 - между 74 и 99 (в сумме дадут более 84х) и половина из тех, что от 10 до 74, которые в паре дадут 84 ("42" выкидываем, т.к. пары у него нет), т.е. еще 32 числа, плюс само "42", которое без пары
JulesПросветленный (36076) 1 месяц назад
42, 75, 76, 77 и так далее до 99. Тех что подходят будет 26 шт. Не подходящие я в своём ответе привёл.
N!K.$.onЗнаток (366) 1 месяц назад
Из ваших неподходящих можно ровно половину взять, т.к. в отсутствии второй выписанной половины они не составят с другими числами 84 в сумме
N!K.$.onЗнаток (366) 1 месяц назад
Т.е. 10 можно записать, а 74 не выписывать, 11-записать, а 73 не писать на доску и ответ будет верным. Речь же только о выписанных из этого перечня числах, а не о тех, которые в него входят
JulesПросветленный (36076) 1 месяц назад
Да. Действительно! Если написать половину из 64 и писать те 26 тогда 58! ++
Похожие вопросы