x³ + y³
We know (x + y) ^ 3 = x ^ 3 + y ^ 3 + 3xy(x + y) So, x ^ 3 + y ^ 3 = (x + y) ^ 3 - 3xy(x + y) = (x + y) ^ 3 - 3xy(x + y) = (x + y)[(x + y) ^ 2 - 3xy) ] Using (a + b) ^ 2 = a ^ 2 + b ^ 2 + 2ab = (x + y)[(x ^ 2 + y ^ 2 + 2xy) - 3xy] = (x + y)(x ^ 2 + y ^ 2 - xy) = (x + y)(x ^ 2 - xy + y ^ 2) = R.H
.S
y=3^x^3 * x^3