Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Найти частные производные функции x³-y³=x²y²

находящийся на Кубе куб Гуру (2880), закрыт 2 дня назад
Лучший ответ
Макар С Мастер (2435) 2 дня назад
Функция задана неявно: не получается выписать зависимость у=у(х), если, конечно, имеется в виду такая функция.
Значит, надо работать с неявно заданной функцией, заданной выражением F(x,y)=0.
В данном случае, x³-y³-x²y² = 0.
Производную можно найти по формуле, выводящейся через полный дифференциал F, у' = dy/dx = -F'x/ F'y
Остальные ответы
Ксения Райт Высший разум (100358) 3 дня назад
И какая жe это функция? Если б была,
скажем, такая u = x³-y³-x²y², тогда её
частные производные были бы такие:
∂u/∂x = 3x²-2xy², ∂u/∂u = -3y²-2x²y
∂²u/∂x² = 6x-2y², ∂²u/∂x∂y = -4xy,
∂²/∂y² = -6y-2x²
находящийся на Кубе кубГуру (2880) 3 дня назад
Странное задание. А так написано в контрольной:(
находящийся на Кубе кубГуру (2880) 3 дня назад
Во втором и пятом опечатки
находящийся на Кубе кубГуру (2880) 3 дня назад
Наверно опечатка в задании
Похожие вопросы