Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты
Лидеры категории
Лена-пена Лена-пена
Искусственный Интеллект
М.И. М.И.
Искусственный Интеллект
Y.Nine Y.Nine
Искусственный Интеллект
king71alex Куклин Андрей Gentleman Dmitriy •••

чему равно число "e" в математике

миша данилов Ученик (197), закрыт 15 лет назад
Лучший ответ
Натали Гуру (4169) 15 лет назад
e=2.71828....Экспонента

ЧИСЛО e. Число, приближенно равное 2,718, которое часто встречается в математике и естественных науках. Например, при распаде радиоактивного вещества по истечении времени t от исходного количества вещества остается доля, равная e–kt, где k – число, характеризующее скорость распада данного вещества. Обратная величина 1/k называется средним временем жизни атома данного вещества, так как в среднем атом прежде, чем распасться, существует в течение времени 1/k. Величина 0,693/k называется периодом полураспада радиоактивного вещества, т. е. временем, за которое распадается половина исходного количества вещества; число 0,693 приближенно равно loge 2, т. е. логарифму числа 2 по основанию e. Аналогично, если бактерии в питательной среде размножаются со скоростью, пропорциональной их числу в настоящий момент, то по истечении времени t начальное количество бактерий N превращается в Nekt. Затухание электрического тока I в простом контуре с последовательным соединением, сопротивлением R и индуктивностью L происходит по закону I = I0e–kt, где k = R/L, I0 – сила тока в момент времени t = 0. Аналогичные формулы описывают релаксацию напряжений в вязкой жидкости и затухание магнитного поля. Число 1/k часто называют временем релаксации. В статистике величина e–kt встречается как вероятность того, что за время t не произошло событий, наступающих случайно со средней частотой k событий в единицу времени. Если S – сумма денег, вложенных под r процентов с непрерывным начислением вместо начисления через дискретные промежутки времени, то к моменту времени t первоначальная сумма возрастет до Setr/100.

Причина «вездесущности» числа e заключается в том, что формулы математического анализа, содержащие экспоненциальные функции или логарифмы, записываются проще, если логарифмы брать по основанию e, а не 10 или какому-либо другому основанию. Например, производная от log10 x равна (1/x)log10 e, тогда как производная от loge x равна просто 1/x. Аналогично, производная от 2x равна 2xloge 2, тогда как производная от eх равна просто ex. Это означает, что число e можно определить как основание b, при котором график функции y = logb x имеет в точке x = 1 касательную с угловым коэффициентом, равным 1, или при котором кривая y = bx имеет в x = 0 касательную с угловым коэффициентом, равным 1. Логарифмы по основанию e называются «натуральными» и обозначаются ln x. Иногда их также называют «неперовыми» , что неверно, так как в действительности Дж. Непер (1550–1617) изобрел логарифмы с другим основанием: неперов логарифм числа x равен 107 log1/e (x/107) (см. также ЛОГАРИФМ) .

Различные комбинации степеней e встречаются в математике так часто, что имеют специальные названия. Таковы, например, гиперболические функции

График функции y = ch x называется цепной линией; такую форму имеет подвешенная за концы тяжелая нерастяжимая нить или цепь. Формулы Эйлера

где i2 = –1, связывают число e с тригонометрией. Частный случай x = p приводит к знаменитому соотношению eip + 1 = 0, связывающему 5 наиболее известных в математике чисел.

При вычислении значения e могут быть использованы и некоторые другие формулы (чаще всего пользуются первой из них) :

Значение e с 15 десятичными знаками равно 2,718281828459045. В 1953 было вычислено значение e с 3333 десятичными знаками. Символ e для обозначения этого числа был введен в 1731 Л. Эйлером (1707–1783).

Десятичное разложение числа e непериодично (e – иррациональное число) . Кроме того, e, как и p, – трансцендентное число (оно не является корнем никакого алгебраического уравнения с рациональными коэффициентами) . Это доказал в 1873 Ш. Эрмит. Впервые было показано, что столь естественным образом возникающее в математике число является трансцендентным. См. также МАТЕМАТИЧЕСКИЙ АНАЛИЗ; НЕПРЕРЫВНЫЕ ДРОБИ; ЧИСЕЛ ТЕОРИЯ; ЧИСЛО p; РЯДЫ.
Остальные ответы
Мария миролюбивая Искусственный Интеллект (192721) 15 лет назад
Приблизительно 2,7... Точное значение не известно - число иррацинаьное
Святослав Лашков Ученик (134) 6 лет назад
число "е" изи запоминаем 2.7 потом день рождения "1828" Толстого Л. Н ещё раз его день рождения конец войны с немцами "45" потом конец войны умножается на 2 "90" и потом "45" конец войны и т. д.
Похожие вопросы