Определение данных тригонометрических функции в Эвклидовой геометрии (где сумма внутренних углов треугольника равна 180 градусов) применимы только для прямоугольных треугольников, в противном случае, вероятно, нужно переходить к геометрии Лобачевского. Однако, если у вас есть любой треугольник, сумма внутренних углов которого равна 180 градусам, то, зная величины сторон, по теореме косинусов можно рассчитать внутренние углы, а уже к этим углам применить интересующие вас тригонометрические функции.
Теорема Пифагора для любого треугольника: а2= в2+с2-2*а*в*cos( угла между ними). т. к. в прямоугольном треугольнике cos 90 = 0, то выражение принимает знакомый нам вид: а2= в2+с2