Top.Mail.Ru
Ответы
Аватар пользователя
15лет
Изменено

Что такое тетраэдр?

По дате
По рейтингу
Аватар пользователя
Новичок
15лет
Аватар пользователя
Мыслитель
15лет

Тетра́эдр (четырёхгранник) — многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

Аватар пользователя
Высший разум
15лет

четырёхгранник

Аватар пользователя
Искусственный Интеллект
15лет

Правильный симплекс. Объёмная фигура (3х мерное тело) , имеющая наименьшее из возможных количество плоских граней (4 шт.) . Остальное уже подсказали и показали.

Аватар пользователя
Гуру
15лет

Тетра́эдр (четырёхгранник) — многогранник с четырьмя треугольными гранями, в каждой из вершин которого сходятся по 3 грани. У тетраэдра 4 грани, 4 вершины и 6 рёбер.

Параллельные плоскости, проходящие через пары скрещивающихся рёбер тетраэдра, определяют описанный около тетраэдра параллелепипед.

Отрезок, соединяющий вершину тетраэдра с точкой пересечения медиан противоположной грани, называется его медианой, опущенной из данной вершины.

Отрезок, соединяющий середины скрещивающихся рёбер тетраэдра, называется его бимедианой, соединяющей данные рёбра.

Отрезок, соединяющий вершину с точкой противоположной грани и перпендикулярный этой грани, называется его высотой, опущенной из данной вершины.

Теорема. Все медианы и бимедианы тетраэдра пересекаются в одной точке. Эта точка делит медианы в отношении 3:1, считая от вершины. Эта точка делит бимедианы пополам.

Выделяют:
равногранный тетраэдр, у которого все грани - равные между собой треугольники;
ортоцентрический тетраэдр, у которого все высоты, опущенные из вершин на противоположные грани, пересекаются в одной точке;
прямоугольный тетраэдр, у которого все ребра, прилежащие к одной из вершин, перпендикулярны между собой;
правильный тетраэдр, у которого все грани - равносторонние треугольники;
каркасный тетраэдр, для которого существует сфера, касающаяся всех его ребер;
соразмерный тетраэдр, все бивысоты которого равны;
инцентрический тетраэдр, у которого отрезки, соединяющие вершины тетраэдра с центрами окружностей, вписанных в противоположные грани, пересекаются в одной точке.