Пользователь удален
Гуру
(2856)
17 лет назад
Просто́е число́ — это натуральное число, имеющее ровно два натуральных делителя: 1 и само себя. Изучением свойств простых чисел занимается теория чисел.
Последовательность простых чисел начинается с
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113 (см. список простых чисел для первых 500 простых) .
Натуральное число, имеющее больше двух делителей, называется составным. Таким образом, все натуральные числа, за исключением единицы, разбиваются на простые и составные.
Разложение натуральных чисел в произведение простых
Основная теорема арифметики утверждает, что каждое натуральное число, большее единицы (1), представимо в виде произведения простых чисел, причём единственным способом (с точностью до порядка следования сомножителей) . Таким образом, простые числа — «элементарные строительные блоки» натуральных чисел.
Представление натурального числа в виде произведения простых называется разложением на простые или факторизацией числа. На настоящий момент неизвестно полиномиальных алгоритмов факторизации чисел, хотя и не доказано, что таких алгоритмов не существует. (Здесь и далее речь идёт о полиномиальной зависимости времени работы алгоритма от логарифма проверяемого числа, то есть от количества его цифр) . На алгоритмической сложности задачи факторизации базируется криптосистема RSA.
Тесты простоты
Эратосфен КиренскийРешето Эратосфена — это простой способ нахождения списка простых чисел до некоторого значения. На практике обычно возникает необходимость проверить, является ли число простым, а не получать список простых чисел.
Существует множество полиномиальных алгоритмов проверки того, является ли данное число n простым, называемых тестами простоты. Большинство таких алгоритмов являются вероятностными (например, тест Миллера — Рабина) и используются для нужд криптографии. Только в 2002 году было доказано, что задача проверки на простоту в общем виде полиномиально разрешима, но предложенный детерминированный алгоритм имеет довольно большую сложность, что затрудняет его практическое применение.
Для некоторых классов чисел существуют специализированные эффективные тесты простоты. Например, для проверки на простоту чисел Мерсенна используется тест Люка — Лемера.
[править] Сколько существует простых чисел?
Простых чисел бесконечно много. Самое старое известное доказательство этого факта было дано Евклидом в «Началах» (книга IX, утверждение 20). Его доказательство может быть кратко воспроизведено так:
Представим, что количество простых чисел конечно. Перемножим их и прибавим единицу. Полученное число не делится ни на одно из конечного набора простых чисел, потому что остаток от деления на любое из них даёт единицу. Значит, число должно делиться на некоторое простое число, не включённое в этот набор.
Математики предлагали другие доказательства. Одно из них (приведённое Эйлером) показывает, что сумма всех чисел, обратных к простым, расходится.
Известная теорема о распределении простых чисел утверждает, что количество простых чисел меньших n, обозначаемое π(n), растет как n / ln(n).
[править] Наибольшее известное простое
Наибольшим известным простым числом по состоянию на сентябрь 2006 года является 232582657 − 1. Оно содержит 9 808 358 десятичных цифр и является 44-м известным простым числом Мерсенна (M32582657). Его нашли 4 сентября 2006 года Кертис Купер и Стивен Бун из Университета штата Миссури (Central Missouri State University), участники проекта по распределённому поиску простых чисел Мерсенна GIMPS.
Предыдущее наибольшее известное простое число 230402457 − 1 содержит 9 152 052 десятичных цифры и является 43-м известным простым числом Мерсенна (M30402457). Его нашли 15 декабря 2005 года также Кертис Купер и Стивен Бун в рамках проекта GIMPS.
Числа Мерсенна выгодно отличаются от остальных наличием эффективного теста простоты: теста Люка — Лемера. Благодаря ему про
Коротеев Александр
Высший разум
(112957)
17 лет назад
Ну ваще пипец!
Полность правильный ответ только у Fighter - и тот скопирован.
Вот что:
Это числа больше 1, которые делятся (нацело) только на 1 и на самих себя.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43....ну и так далее, если я в последних не ошибся.