Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты
Лидеры категории
Лена-пена Лена-пена
Искусственный Интеллект
М.И. М.И.
Искусственный Интеллект
Y.Nine Y.Nine
Искусственный Интеллект
king71alex Куклин Андрей Gentleman Dmitriy •••

что называется предельной, абсолютной и относительной погрешностью

Ольга Вицкова Ученик (91), закрыт 14 лет назад
Лучший ответ
РЫБОЛОВ =))) Гений (73874) 14 лет назад
http://umka.nrpk8.ru/library/courses/chm/ch01s04.dbk

1.4. Погрешности приближенных вычислений
Тема 1. Введение. Приближенные числа и действия над ними. Оценка точности вычислений

1.4. Погрешности приближенных вычислений
Понятие о погрешности приближения

Естественно, что приближенное и точное число всегда отличаются друг от друга. Иначе говоря, при приближении возникает некоторая погрешность приближения. Причем, в математике различают относительную и абсолютную погрешность.

Определение

Абсолютной погрешностью (или, просто, погрешностью) приближенного числа называют разность между этим числом и его точным значением (при этом из большего числа вычитается меньшее) .

Пример

При округлении числа 1284 до 1300 абсолютная погрешность составляет 1300-1284=16. А при округлении до 1280 абсолютная погрешность составляет 1280-1284 = 4.

Определение

Относительной погрешностью приближенного числа называется отношение абсолютной погрешности приближенного числа к самому этому (точному) числу.

Пример

При округлении числа 197 до 200 абсолютная погрешность составляет 200-197 = 3. Относительная погрешность равна 3/197 ≈ 0,01523 или приближенно 3/200 ≈ 1,5%.

В большинстве случаев невозможно узнать точное значение приближенного числа, а значит и точную величину погрешности. Однако почти всегда можно установить, что погрешность (абсолютная или относительная) не превосходит некоторого числа.

Например, продавец взвешивает арбуз на чашечных весах. В наборе гирь наименьшая – 50 г. Взвешивание дало 3600 г. Это число – приближенное. Точный вес арбуза неизвестен. Но абсолютная погрешность не превышает 50 г. Относительная погрешность не превышает 50/3600 ≈ 1,4%.

Определение

Число, заведомо превышающее абсолютную погрешность (или в худшем случае равное ей) , называется предельной абсолютной погрешностью.

Определение

Число, заведомо превышающее относительную погрешность (или в худшем случае равное ей) называется предельной относительной погрешностью.

Предельная абсолютная погрешность обозначается греческой буквой Δ – "дельта". А предельная относительная погрешность – греческой буквой δ ("дельта малая"). Если приближенное число обозначить буквой α, то δ = Δ/ α.

В примере с арбузом за предельную абсолютную погрешность можно взять Δ = 50г, а за предельную относительную – δ = 1,4%.

Погрешность действий над приближенными числами

Предельная абсолютная погрешность суммы (разности) не превышает суммы предельных абсолютных погрешностей отдельных слагаемых.

Пример 1

Пусть даны точные числа и их приближенные значения: 2,463 ≈ 2,46 и 3,208 ≈ 3,21.

Их абсолютные погрешности приближений соответственно равны: 2,463-2,46 = 0,003 и 3,21-3,208 = 0,002.

Рассмотрим сумму приближенных чисел – 2,46+3,21 = 5,67.

Предельная погрешность суммы равна 0,003+0,002 = 0,005.

Если проверить, то получится, что точная сумма будет 2,463+3,208 = 5,671.

Следовательно, точно вычисленная погрешность приближения будет: 5,671-5,67 = 0,001. Действительно 0,001 ≤ 0,005.

Предельная относительная погрешность произведения приближенно равна сумме предельных относительных погрешностей сомножителей.

Пример 2

Пусть перемножаются приближенные числа 50 и 20 и пусть предельная относительная погрешность первого сомножителя равна 0,4%, а второго 0,5%. тогда предельная относительная погрешность произведения 50*20 = 1000 приближенно равна 0,9%.

Предельная относительная погрешность частного приближенно равна сумме предельных относительных погрешностей делимого и делителя.

Таким образом, легко заметить, что при приближенных вычислениях погрешность может накапливаться!
Остальные ответы
Виолетта Найда Ученик (236) 5 лет назад
Спасибо) Это мне помогло лучше разобраться в числовых методах)
Похожие вопросы