Top.Mail.Ru
Ответы

Натуральные числа. Делители и кратные натурального числа. Четные и нечетные числа. Признаки делимости на 2, 3, 5, 10 и

Делители и кратные натурального числа. Четные и нечетные числа. Признаки делимости на 2, 3, 5, 10 и 9. Простые и составные числа. Понятие о разложении натурального числа на простые множители. Наибольший общий делитель. Наименьшее общее кратное.

По дате
По Рейтингу
Аватар пользователя
Новичок
15лет

Наибольший общий делитель

Общий делитель. Наибольший общий делитель.

Общим делителем нескольких чисел называется число, которое является делите-лем каждого из них. Например, числа 36, 60, 42 имеют общие делители 2, 3 и 6. Среди всех общих делителей всегда есть наибольший, в данном случае это 6. Это и есть наибольший общий делитель (НОД) .

Чтобы найти наибольший общий делитель (НОД) нескольких чисел надо:

1) представить каждое число как произведение его простых множителей, например:

360 = 2 · 2 · 2 · 3 · 3 · 5 ,

2) записать степени всех простых множителей:

360 = 2 · 2 · 2 · 3 · 3 · 5 = 23 · 32 · 51,

3) выписать все общие делители (множители) этих чисел;

4) выбрать наименьшую степень каждого из них, встретившуюся во всех произведениях;

5) перемножить эти степени.

П р и м е р . Найти НОД чисел: 168, 180 и 3024.

Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 ,

180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51 ,

3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71 .

Выпишем наименьшие степени общих делителей 2 и 3

и перемножим их:

НОД = 22 · 31 = 12 .
Наименьшее общее кратное

Общее кратное. Наименьшее общее кратное.

Общим кратным нескольких чисел называется число, которое делится на каждое из этих чисел. Например, числа 9, 18 и 45 имеют общее кратное 180. Но 90 и 360 – тоже их общие кратные. Среди всех общих кратных всегда есть наименьшее, в данном случае это 90. Это число называется наименьшим общим кратным (НОК) .

Чтобы найти наименьшее общее кратное (НОК) нескольких чисел надо:

1) представить каждое число как произведение его простых множителей, например:

504 = 2 · 2 · 2 · 3 · 3 · 7 ,

2) записать степени всех простых множителей:

504 = 2 · 2 · 2 · 3 · 3 · 7 = 23 · 32 · 71,

3) выписать все простые делители (множители) каждого из этих чисел;

4) выбрать наибольшую степень каждого из них, встретившуюся во всех разложениях этих чисел;

5) перемножить эти степени.

П р и м е р . Найти НОК чисел: 168, 180 и 3024.

Р е ш е н и е . 168 = 2 · 2 · 2 · 3 · 7 = 23 · 31 · 71 ,

180 = 2 · 2 · 3 · 3 · 5 = 22 · 32 · 51 ,

3024 = 2 · 2 · 2 · 2 · 3 · 3 · 3 · 7 = 24 · 33 · 71 .

Выписываем наибольшие степени всех простых делителей

и перемножаем их:

НОК = 24 · 33 · 51 · 71 = 15120 .

Аватар пользователя
Гуру
15лет

Числа 1,2,3,4,5,6,7,8... называются натуральными или целыми положительными числами. Число "0" не является делителем, на "0" делить нельзя!! ! Чётные числа делятся на 2 без остатка, все остальные числа - нечётные.
Число делится на 2 только тогда, когда его последняя цифра делится на 2.
Число делится на 3 тогда, когда сумма его цифр делится на 3.
Число делится на 4 тогда, когда две его последние цифры образуют число, делящееся на 4, или две его последние цифры - нули.
Число делится на 5 тогда, когда его последняя цифра 0 или 5.
Число делится на 9 тогда, когда сумма его цифр делится на 9.
Число делится на 10 тогда, когда его последняя цифра 0.
Число называется простым, когда оно делится только на 1 и само себя.
Число называется составным, когда оно делится не только на 1 и само себя, но ещё и на другие числа.

Аватар пользователя
Мыслитель
15лет

ну на 2 делятся только те числа, которые заканчиваются на чтную цифру, на 5 - только те которые заканчиваются на 5 или 0 (на 10 - только 0), на 3 - те, сумма цифр в которых делится на 3, на 9 по тому же принциау что и на тройку. простое число - это то которое делится на себя и на единицу, составное - то, у которого кроме себя самого и единицы есть еще делители

Аватар пользователя
Знаток
15лет

Простые и составные числа
Все целые числа (кроме 0 и 1) имеют минимум два делителя: 1 и самого себя. Числа, не имеющие других делителей, называются простыми числами. Числа, имеющие другие делители, называются составными числами. Таким образом, все натуральные числа, за исключением единицы, разбиваются на простые и составные. Простых чисел – бесконечное множество. Ниже приведены простые числа, не превосходящие 200:
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139, 149, 151,
157, 163, 167, 173, 179, 181, 191, 193, 197, 199.

Основная теорема арифметики простых чисел. Любое составное натуральное число можно представить единственным образом в виде произведения простых чисел (порядок сомножителей при этом не принимается во внимание).

Аватар пользователя
Ученик
8лет

спс