NO ONE
Мастер
(1669)
13 лет назад
Медиана:
Медианы треугольника пересекаются в одной точке, которая называется центроидом, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Треугольник делится тремя медианами на шесть равновеликих треугольников.
Большей стороне треугольника соответствует меньшая медиана.
Из векторов, образующих медианы, можно составить треугольник.
При аффинных преобразованиях медиана переходит в медиану.
Высота:
перпендикулярна к проведенной стороне
Высоты треугольника пересекаются в одной точке, называемой ортоцентром. - Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E, не обязательно даже лежащих в одной плоскости:
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
Минимальная высота в треугольнике всегда проходит внутри этого треугольника.
Бисектриса:
Теорема о биссектрисе: Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
Если 2 биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса) .
Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, [1] причём даже при наличии трисектора.
Источник: Википедия
Павлина Степанян
Ученик
(224)
8 лет назад
Медиана:
Медианы треугольника пересекаются в одной точке, которая называется центроидом, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Треугольник делится тремя медианами на шесть равновеликих треугольников.
Большей стороне треугольника соответствует меньшая медиана.
Из векторов, образующих медианы, можно составить треугольник.
При аффинных преобразованиях медиана переходит в медиану.
Высота:
перпендикулярна к проведенной стороне
Высоты треугольника пересекаются в одной точке, называемой ортоцентром. - Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E, не обязательно даже лежащих в одной плоскости:
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
Минимальная высота в треугольнике всегда проходит внутри этого треугольника.
Бисектриса:
Теорема о биссектрисе: Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
Если 2 биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса) .
Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, [1] причём даже при наличии трисектора.
Степан Казанцев
Ученик
(145)
4 года назад
Медиана- отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Биссектриса- луч, исходящий из вершин треугольника и делящий его по попал.
Высота треугольника- это перпендикуляр, опущенный из вершин треугольника на противоположную сторону.