Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Почему правильных многоугольников сколько угодно, а правильных многогранников всего пять?

Niemand Искусственный Интеллект (211357), закрыт 14 лет назад
Лучший ответ
Анатолий Гений (85025) 14 лет назад
Правильные многогранники



Теорема 8.1.

Существует не более пяти различных видов правильных многогранников.

Доказательство

Из определения правильного многогранника следует, что его гранями могут быть лишь треугольники, четырехугольники и пятиугольники. Действительно, докажем например, что грани не могут быть правильными шестиугольниками. По определению правильного многогранника, в каждой его вершине должны сходиться не менее трех граней. Однако, в правильном шестиугольнике углы равны 120°. Получается, что сумма трех плоских углов выпуклого многогранного угла равна 360°, а это невозможно, так как эта сумма всегда меньше 360°. Тем более грани правильного многогранника не могут оказаться многоугольниками с большим числом сторон.

Выясним, сколько граней может сходиться в вершине правильного многогранника. Если все его грани – правильные треугольники, то к каждой вершине могут прилегать не более пяти треугольников, так как иначе сумма плоских углов при этой вершине будет не менее 360°, что, как мы убедились, невозможно. Итак, если все грани правильного многогранника – правильные треугольники, то к каждой вершине прилегают три, четыре или пять треугольников. Аналогичными рассуждениями убеждаемся, что в каждой вершине правильного многогранника, грани которого – правильные четырехугольники и пятиугольники, сходятся ровно три ребра.

Докажем теперь, что существует только один многогранник заданного типа с фиксированной длиной ребра. Рассмотрим, например, случай, когда все грани – правильные пятиугольники. Предположим противное: пусть существует два многогранника, все грани которых – правильные пятиугольники со стороной a, а все двугранные углы в каждом многограннике равны между собой. Отметим, что необязательно все двугранные углы одного многогранника равны двугранным углам другого многогранника: именно это мы сейчас и докажем.



Как мы показали, из каждой вершины каждого многогранника выходит три ребра. Пусть из вершины А одного многогранника выходят ребра AB, AC и AD, а из вершины A1 другого – ребра A1B1, A1C1 и A1D1. ABCD и A1B1C1D1 – правильные треугольные пирамиды, так как у них равны ребра, выходящие из вершин A и A1, и плоские углы при этих вершинах. Отсюда следует, что двугранные углы одного многогранника равны двугранным углам другого. Значит, если мы совместим пирамиды ABCD и A1B1C1D1, то совместятся и сами многогранники. Значит, если существует правильный многогранник, все грани которого – правильные пятиугольники со стороной a, то такой многогранник единственный.

Аналогично рассматриваются остальные многогранники. В том, случае, когда все грани – треугольники и к каждой вершине примыкают четыре или пять треугольников, следует воспользоваться леммой 8.1. Из нее следует, что концы ребер, выходящих из одной вершины, лежат в одной плоскости и служат вершинами правильного четырех- и пятиугольника. Теорема доказана.
Остальные ответы
НАТАЛИ-Я Мыслитель (8352) 14 лет назад
Их всего четыре. Первые два были открыты И. Кеплером (1571 – 1630 гг.) , а два других были построены почти двести лет спустя французским математиком и механиком Луи Пуансо (1777 – 1859 гг.) . Именно поэтому правильные звездчатые многогранники получили название тел Кеплера – Пуансо. Что же они из себя представляют?

В работе «О многоугольниках и многогранниках» (1810 г. ) Луи Пуансо перечислил и описал все правильные звездчатые многогранники, поставил, но не решил вопрос о существовании правильных многогранников, число граней которых отлично от 4, 6, 8, 12, 20.

Отчет на этот вопрос был дан год спустя, в 1811 году, французским математиком Огюстом Луи Коши (1789 – 1857 гг. ) в работе «Исследование о многогранниках» . В ней доказывается, что не существует других правильных многогранников, кроме перечисленных Пуансо. Автор приходит к выводу, что правильные звездчатые многогранники получаются из выпуклых правильных многогранников путем продолжения их ребер или граней, исследуется вопрос, из каких именно правильных многогранников могут быть получены правильные звездчатые многогранники. Делается вывод о том, что тетраэдр, куб и октаэдр не имеют звездчатых форм, додекаэдр имеет три, а икосаэдр – одну звездчатую форму (это малый звездчатый додекаэдр, большой додекаэдр и большой икосаэдр).
Ringo YukiМудрец (17933) 14 лет назад
пифагор с теэтетом плачут кровавыми слезами на небесах: они не ожидали что их открытия будут приписаны столь далекому отпрыску

кстати у вас в ответе 4 а на картинке 5 )
Ringo Yuki Мудрец (17933) 14 лет назад
доказательство этого факта простое. по определению: правильный многогранник составляется из правильных многоугольников в каждой вершине сходится одинаковое число ребер. чтобы построение было возможным сумма сходящихся в одной точке плоских углов должна быть строго меньше 2pi (иначе многогранный угол не сомкнется) и этих углов должны быть минимум 3 (иначе многогранный угол будет вырожденным)

.) треугольники. угол при вершине = pi/3. n*pi/3 < 2pi => n=3..5
.) квадраты. угол при вершине = pi/2. n*pi/2 < 2pi => n=3
.) пятиугольники. угол при вершине 3pi/5. n*3pi/5 < 2pi => n=3
для шестиугольников и выше тройной угол при вершине не меньше 2pi поэтому выше перечислены все (5) возможные случаи.

может быть ваш вопрос "почему" подразумевает желание получить объяснение на пальцах. можно сказать так: условие правильности для многранника ОКАЗАЛОСЬ существенно жестче чем для многоугольника
NiemandИскусственный Интеллект (211357) 14 лет назад
А в 4-х мерном пространстве правильных многогранников всего два: симплекс (аналог тетраэдра) и 4-х мерный куб. А в пятимерном - опять больше (пардон, если ошибаюсь, но вроде бы так). Доказательства для каждого случая, конечно, есть, и в них можно разобраться, но в общем, это остается непонятным (для меня, по крайней мере).
Ringo Yuki Мудрец (17933) боюсь как бы ваш вопрос "почему" не оказался из разряда "почему e^i*pi = -1"
Leonid Высший разум (389364) 14 лет назад
Потому что мы живёт в трёхмерном мире. В четырёхмерном мире уже другие правила игры, и там число возможных вариантов становится другим.
Похожие вопросы