Виталик Карандашов
Мастер
(1686)
13 лет назад
Квадратными скобками в математике могут обозначаться:
Операция взятия целой части числа.
Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]².
Векторное произведение векторов: c=[a,b]=[a×b]=a × b.
Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y).
Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса.
Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) .
Нотация Айверсона
Константин Алексашин
Профи
(906)
13 лет назад
Квадратными скобками в математике могут обозначаться:
Операция взятия целой части числа.
Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]².
Векторное произведение векторов: c=[a,b]=[a×b]=a × b.
Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y).
Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса.
Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) .
Нотация Айверсона
....
КОРОЧЕ: сходи в wikipedia.org и БУДЕТ ТЕБЕ СЧАСТЬЕ.... тупо задавать вопросы... удел игрока. .
P.S. Далее пошло из серии МАССИВОВ :)
4f*%@157_5142!!6
Знаток
(280)
7 лет назад
Квадратными скобками в математике могут обозначаться:
Операция взятия целой части числа.
Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]².
Векторное произведение векторов: c=[a,b]=[a×b]=a × b.
Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y).
Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса.
Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) .
Нотация Айверсона
loc lod
Ученик
(118)
2 года назад
Квадратными скобками в математике могут обозначаться:
Операция взятия целой части числа.
Для задания приоритета операций (аналогично круглым) в качестве скобок «второго уровня» — так легче различать вложенность скобок, например: [(2+3)·4]².
Векторное произведение векторов: c=[a,b]=[a×b]=a × b.
Закрытые сегменты; запись [1;3] означает, что в множество включены числа 1 \leq x \leq 3. В этом случае не соблюдается правило парности скобок, например, закрытый слева и открытый справа сегмент может быть обозначен как [x,y[ или [x,y).
Коммутатор [A,B] \equiv [A,B]_- \equiv AB-BA\! и антикоммутатор [A,B]_+ \equiv AB+BA\,, хотя для последнего иногда используют фигурные скобки без нижнего индекса.
Одинарная квадратная скобка объединяет совокупность уравнений или неравенств (чтобы совокупность выполнялась, достаточно, чтобы выполнялось любое из уравнений) .
Нотация Айверсона