Катька
Профи
(539)
13 лет назад
Степень с рациональным показателем.
Выражение аn определено для всех а и n, кроме случая а=0 при n≤0. Напомним свойства таких степеней.
Для любых чисел а, b и любых целых чисел m и п справедливы равенства:
am*an=am+n;
am:аn=am-n (а≠0);
(аm)n = аmn;
(ab) n = an*bn;
свойтство степеней (b≠0);
а1=а; а0=1 (а≠0).
Отметим также следующее свойство:
Если m>n, то аm>аn при а>1 и аm<аn при 0<а<1.
В этом пункте мы обобщим понятие степени числа, придав смысл выражениям типа 20.3, 85/7, 4-1/2 и т. д. Естественно при этом дать определение так, чтобы степени с рациональными показателями обладали теми же свойствами (или хотя бы их частью) , что и степени с целым показателем. Тогда, в частности, n-я степень числа a в степени m на n должна быть равна аm. Действительно, если свойство
(ap)q=apq
выполняется, то
равенство
Последнее равенство означает (по определению корня n-й степени) , что число a в степени m на n должно быть корнем п-й степени из числа аm.
Определение.
Степенью числа а>0 с рациональным показателем r=m на n, где m — целое число, а n — натуральное (n > 1), называется число корень n-ой степени из a в степени m
Итак, по определению
по определению (1)
Степень числа 0 определена только для положительных показателей; по определению 0r = 0 для любого r>0.
Замечание 1.
Из определения степени с рациональным показателем сразу следует, что для любого положительного а и любого рационального r число ar положительно.
Замечание 2.
Любое рациональное число допускает различные записи его в виде дроби, поскольку по определению для любого натурального k. Значение ar также не зависит от формы записи рационального числа r. В самом деле, из свойств корней следует, что
степень с рациональным показателем
Замечание 3.
При а < 0 рациональная степень числа а не определяется, и это не случайно. Если бы мы сочли верной формулу (1) и для а<0, то, например, значение пример равнялось бы пример, т. е. — 2. Но, с другой стороны, пример, и поэтому должно выполняться равенство пример.