Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Признаки приспособления птиц к полёту

Diana. Ученик (153), закрыт 13 лет назад
Лучший ответ
((((( СТЕПАНЫЧ ))))) Мыслитель (5439) 13 лет назад
1) Тело покрыто перьями (обеспечивают обтекаемость) а передние конечности превратились в крылья (несущие плоскости в полете) , есть хвост. 2) Птицы обладают интенсивным обменом веществ, температура их тела постоянна (гомойтермные амниоты) ,
сердце четырехкамерное, артериальная кровь отделена от венозной (лучшее снабжениие тканей кислородом) 3) Превращение передних конечностей в крылья сопровождалось
перестройкой скелета, мускулатуры конечностей и плечевого пояса птиц. Преобразование скелета и мускулатуры задних конечностей и тазового пояса позволило им перейти к
двуногому хождению и плаванию. 4) Кости скелета птиц полые внутри, что увеличивает их прочность и делает скелет более легким (приспособление к полету) . 5) Увеличение размеров головного мозга и интенсификация органов чувств расширили возможности ориентировки в пространстве и улучшили координацию их поведения. 6) У птиц появились воздушные мешки, связанные с легкими - это сделало возможным усвоение
кислорода и при выдохе, а как следствие - интенсификация обмена
веществ. 7) Приспособленность к полету обусловила форму тела птиц: туловище обтекаемой яйцеобразной формы, компактно, покрыто перьями, голова небольшая, шея длинная и подвижная. Размеры тела птиц варьируют в небольших пределах, поскольку
возможность полета ограничивают размеры. Самые крупные летающие птицы - (лебеди,
грифы, дрофы) - 14-16 кг.

Маховые и рулевые перья образуют большую часть несущей поверхности крыльев и хвоста и необходимы для полета. Перьевой покров, придавая телу птиц обтекаемую форму, помогает полету, сохраняет тепло, защищает от механических повреждений. Плечевой пояс птиц состоит из трех пар костей: саблевидных лопаток, лежащих вдоль позвоночника; двух тонких ключиц, которые срастаются в вилочку, расположенную между массивными коракоидами и играющую роль амортизатора, смягчающего толчки при взмахах крыла. Коракоиды соединяются одним концом с лопатками и основаниями плечевых костей, а другим - с грудиной. Скелет крыла состоит из крупной полой кости плеча, двух костей предплечья (локтевой и лучевой) , сросшихся (кроме двух) костей запястья и пястья, образующих пряжку, и сильно редуцированных и измененных фаланг второго, третьего и четвертого пальцев и атрофированных первого и пятого пальцев. Первостепенные маховые крылья прикрепляются к пряжке и к фалангам второго пальца. От первого и третьего пальца сохраняется лишь по одной короткой фаланге. К фаланге первого пальца прикрепляется несколько перьев - «крылышек» .
Мускулатура птиц дифференцирована и более мощная, чем у рептилий. Особенно развиты грудные и подключичные мышцы, приводящие в движение крылья; Для птиц характерно накопление в мышцах миоглобина, позволяющего создавать резервный запас кислорода, утилизируемого в период интенсивной работы. Наивысшая концентрация миоглобина
достигается в большой грудной мышце, мускулатуре мускульного желудка и сердца. Больше всего гемоглобина в мышцах у птиц, летающих активным полетом, ныряющих и птиц высокогорий. Причем концентрация гемоглобина в крови всегда выше, чем в мышцах.
Интенсивность пищеварения у птиц очень высока. Высокий уровень обмена веществ связан с переработкой большого количества пищи.
Органы дыхания птиц также несут признаки приспособления к полету. С легкими связаны воздушные мешки, объем которых почти в 10 раз превышает объем легких. Воздушные мешки расположены между мышцами, среди внутренних органов и в полостях
трубчатых костей крыльев. Они играют большую роль в дыхании птиц во время
полета. В полете грудная клетка практически остается неподвижной и прохождение воздуха через легкие осуществляется в основном за счет расширения и сжатия воздушных мешков. При вдохе воздух поступает в легкие и воздушные мешки. При выдохе воздух поступает из воздушных мешков в легкие и в них снова происходит газообмен.
Остальные ответы
Танюша Широкоряденко Ученик (195) 13 лет назад
Начало исследованиям полёта птиц заложил ещё Аристотель в работе «О частях животных», в четвёртой книге. Он считал, что скорость пропорциональна силе, которая действует на тело, поэтому для движения постоянно необходим «движитель», который двигает тело, а сам при этом остаётся недвижимым. Чтобы объяснить движение летающих объектов, Аристотель был вынужден ввести понятие передачи функции «движителя» частям воздуха. Понятия инерции, ускорения и аэродинамического сопротивления тогда ещё не были известны, поэтому фактически физика полёта осталась необъясненной.

Лишь через два тысячелетия следующий значительный шаг в исследовании полёта птиц сделал Леонардо Да Винчи в своей работе «Кодекс о полёте птиц». Его заметки подробно описывали, что необходимо не только для равномерного полёта, но и для взлёта и посадки, при порывах ветра и в других ситуациях.

Его изображения детально показывали этапы движения разных частей тела птиц. Также он ввёл понятие давления воздуха и его изменений вокруг крыльев. Наблюдения за птицами натолкнули его на мысль, что основная тяга в полёте создаётся концевыми частями крыла[1]. Тем не менее, работы Леонардо Да Винчи о полёте птиц долго оставались малоизвестными — их опубликовали лишь в середине XX века[2].

В работе Джованни Альфонсо Борелли «О движении животных», опубликованной в 1680 году, подробно описана анатомия птиц с точки зрения механики и выдвинута модель, объясняющая образование подъёмной силы. Также Борелли опроверг идею Аристотеля о роли хвоста птиц в регулировании направления полёта.

Следующие этапы развития знаний о полёте птиц связаны со становлением гидродинамики. Так, Христиан Гюйгенс в ХVII столетии измерил зависимость аэродинамического сопротивления от скорости, а его ученик Готфрид Лейбниц фактически ввёл понятие закона сохранения энергии.

В 1738 году Даниил Бернулли в работе «Гидродинамика» опубликовал выведенный им закон, который связывал давление жидкости с её скоростью (сейчас известный как закон Бернулли), на основе которого Леонард Эйлер вывел набор дифференциальных уравнений, которые описывали движение жидкости. Эти уравнения впервые дали количественное описание полёта, хотя и не давали правдоподобных результатов из-за отсутствия в них вязкости. Лишь в 1843 году в работе Жан-Клода Барре Де Сен-Венана, и, независимо, в работе 1845 года Рафаэля Стокса, уравнения Эйлера были дополнены вязкостью и получили название уравнений Навье-Стокса.

Летательный аппарат Отто Лилиенталя, 1894 год.

Первые попытки применения этих принципов с целью копирования полёта птиц и создания летательных аппаратов тяжелее воздуха были осуществлены Джорджем Кейли в начале XIX века. В своих работах периода 1809—1810 годов он опубликовал первые количественные расчёты касательно полёта птиц и вывел форму наименьшего сопротивления для заданного объёма. Он также осуществил первые попытки создания искусственных летательных аппаратов, которые, однако, завершились неудачей.

Эти попытки были продолжены Отто Лилиенталем, который также детально исследовал полёт птиц и сделал на его основе собственный летательный аппарат, но его эксперименты закончились гибелью из-за травм, полученных при аварии летательного аппарата.

В 1880-х годах Этьен Жюль Маре ещё дальше продвинулся в исследовании полёта птиц, сняв первые кинофильмы полёта птиц, и сконструировал очень сложные экспериментальные установки для измерения сил и давления воздуха в различных точках вокруг птицы, — в частности, он получил эмпирическую зависимость аэродинамического сопротивления от поверхности.

Серия фотографий пеликана, сделанная Маре, 1882 год.

В начале ХХ столетия с созданием самолётов основное направление гидро- и аэродинамики сместилось от исследования птиц к исследованию аппаратов с неподвижными крыльями. Для этих аппаратов были созданы теории, и хотя считалось, что их можно применять и для птиц, экспериментальных исследований практически не проводилось.

Лишь в 1960-х годах исследование полёта птиц началось ради и
нина чернышова Ученик (185) 9 лет назад
какие приспособленяк к полёту есть у орла?
Кудинов Ярик Ученик (144) 8 лет назад
Основными признаками, позволяющими пернатым освоить воздушную среду являются:

- перьевой покров;

- видоизменение передних конечностей в крылья;

- теплокровность;

- легкий скелет;

- наличие специальной кости - киля;

- двойное дыхание;

- укороченный кишечник;

- отсутствие одного яичника у самок;

- хорошо развитая нервная система.

Эти особенности строения иллюстрируют, как птицы приспособлены к полету.
Кристина и Уля Плехановы Ученик (114) 7 лет назад
1) Тело покрыто перьями (обеспечивают обтекаемость) а передние конечности превратились в крылья (несущие плоскости в полете) , есть хвост. 2) Птицы обладают интенсивным обменом веществ, температура их тела постоянна (гомойтермные амниоты) ,
сердце четырехкамерное, артериальная кровь отделена от венозной (лучшее снабжениие тканей кислородом) 3) Превращение передних конечностей в крылья сопровождалось
перестройкой скелета, мускулатуры конечностей и плечевого пояса птиц. Преобразование скелета и мускулатуры задних конечностей и тазового пояса позволило им перейти к
двуногому хождению и плаванию. 4) Кости скелета птиц полые внутри, что увеличивает их прочность и делает скелет более легким (приспособление к полету) . 5) Увеличение размеров головного мозга и интенсификация органов чувств расширили возможности ориентировки в пространстве и улучшили координацию их поведения. 6) У птиц появились воздушные мешки, связанные с легкими - это сделало возможным усвоение
кислорода и при выдохе, а как следствие - интенсификация обмена
веществ. 7) Приспособленность к полету обусловила форму тела птиц: туловище обтекаемой яйцеобразной формы, компактно, покрыто перьями, голова небольшая, шея длинная и подвижная. Размеры тела птиц варьируют в небольших пределах, поскольку
возможность полета ограничивают размеры. Самые крупные летающие птицы - (лебеди,
грифы, дрофы) - 14-16 кг.

Маховые и рулевые перья образуют большую часть несущей поверхности крыльев и хвоста и необходимы для полета. Перьевой покров, придавая телу птиц обтекаемую форму, помогает полету, сохраняет тепло, защищает от механических повреждений. Плечевой пояс птиц состоит из трех пар костей: саблевидных лопаток, лежащих вдоль позвоночника; двух тонких ключиц, которые срастаются в вилочку, расположенную между массивными коракоидами и играющую роль амортизатора, смягчающего толчки при взмахах крыла. Коракоиды соединяются одним концом с лопатками и основаниями плечевых костей, а другим - с грудиной. Скелет крыла состоит из крупной полой кости плеча, двух костей предплечья (локтевой и лучевой) , сросшихся (кроме двух) костей запястья и пястья, образующих пряжку, и сильно редуцированных и измененных фаланг второго, третьего и четвертого пальцев и атрофированных первого и пятого пальцев. Первостепенные маховые крылья прикрепляются к пряжке и к фалангам второго пальца. От первого и третьего пальца сохраняется лишь по одной короткой фаланге. К фаланге первого пальца прикрепляется несколько перьев - «крылышек» .
Мускулатура птиц дифференцирована и более мощная, чем у рептилий. Особенно развиты грудные и подключичные мышцы, приводящие в движение крылья; Для птиц характерно накопление в мышцах миоглобина, позволяющего создавать резервный запас кислорода, утилизируемого в период интенсивной работы. Наивысшая концентрация миоглобина
достигается в большой грудной мышце, мускулатуре мускульного желудка и сердца. Больше всего гемоглобина в мышцах у птиц, летающих активным полетом, ныряющих и птиц высокогорий. Причем концентрация гемоглобина в крови всегда выше, чем в мышцах.
Интенсивность пищеварения у птиц очень высока. Высокий уровень обмена веществ связан с переработкой большого количества пищи.
Органы дыхания птиц также несут признаки приспособления к полету. С легкими связаны воздушные мешки, объем которых почти в 10 раз превышает объем легких. Воздушные мешки расположены между мышцами, среди внутренних органов и в полостях
трубчатых костей крыльев. Они играют большую роль в дыхании птиц во время
полета. В полете грудная клетка практически остается неподвижной и прохождение воздуха через легкие осуществляется в основном за счет расширения и сжатия воздушных мешков. При вдохе воздух поступает в легкие и воздушные мешки. При выдохе воздух поступает из воздушных мешков в легкие и в них с
Владимир Пискунов Знаток (292) 6 лет назад
Признаки приспособления птиц к полету Основными признаками, позволяющими пернатым освоить воздушную среду являются: - перьевой покров; - видоизменение передних конечностей в крылья; - теплокровность; - легкий скелет; - наличие специальной кости - киля; - двойное дыхание; - укороченный кишечник; - отсутствие одного яичника у самок; - хорошо развитая нервная система. Эти особенности строения иллюстрируют, как птицы приспособлены к полету. - Читайте подробнее на FB.ru: http://fb.ru/article/232633/prisposoblenie-ptits-k-poletu-priznaki-kak-ptitsyi-prisposobilis-k-poletu
Roman???? Ученик (205) 4 года назад
1) Тело покрыто перьями (обеспечивают обтекаемость) а передние конечности превратились в крылья (несущие плоскости в полете) , есть хвост. 2) Птицы обладают интенсивным обменом веществ, температура их тела постоянна (гомойтермные амниоты) ,
сердце четырехкамерное, артериальная кровь отделена от венозной (лучшее снабжениие тканей кислородом) 3) Превращение передних конечностей в крылья сопровождалось
перестройкой скелета, мускулатуры конечностей и плечевого пояса птиц. Преобразование скелета и мускулатуры задних конечностей и тазового пояса позволило им перейти к
двуногому хождению и плаванию. 4) Кости скелета птиц полые внутри, что увеличивает их прочность и делает скелет более легким (приспособление к полету) . 5) Увеличение размеров головного мозга и интенсификация органов чувств расширили возможности ориентировки в пространстве и улучшили координацию их поведения. 6) У птиц появились воздушные мешки, связанные с легкими - это сделало возможным усвоение
кислорода и при выдохе, а как следствие - интенсификация обмена
веществ. 7) Приспособленность к полету обусловила форму тела птиц: туловище обтекаемой яйцеобразной формы, компактно, покрыто перьями, голова небольшая, шея длинная и подвижная. Размеры тела птиц варьируют в небольших пределах, поскольку
возможность полета ограничивают размеры. Самые крупные летающие птицы - (лебеди,
грифы, дрофы) - 14-16 кг.

Маховые и рулевые перья образуют большую часть несущей поверхности крыльев и хвоста и необходимы для полета. Перьевой покров, придавая телу птиц обтекаемую форму, помогает полету, сохраняет тепло, защищает от механических повреждений. Плечевой пояс птиц состоит из трех пар костей: саблевидных лопаток, лежащих вдоль позвоночника; двух тонких ключиц, которые срастаются в вилочку, расположенную между массивными коракоидами и играющую роль амортизатора, смягчающего толчки при взмахах крыла. Коракоиды соединяются одним концом с лопатками и основаниями плечевых костей, а другим - с грудиной. Скелет крыла состоит из крупной полой кости плеча, двух костей предплечья (локтевой и лучевой) , сросшихся (кроме двух) костей запястья и пястья, образующих пряжку, и сильно редуцированных и измененных фаланг второго, третьего и четвертого пальцев и атрофированных первого и пятого пальцев. Первостепенные маховые крылья прикрепляются к пряжке и к фалангам второго пальца. От первого и третьего пальца сохраняется лишь по одной короткой фаланге. К фаланге первого пальца прикрепляется несколько перьев - «крылышек» .
Мускулатура птиц дифференцирована и более мощная, чем у рептилий. Особенно развиты грудные и подключичные мышцы, приводящие в движение крылья; Для птиц характерно накопление в мышцах миоглобина, позволяющего создавать резервный запас кислорода, утилизируемого в период интенсивной работы. Наивысшая концентрация миоглобина
достигается в большой грудной мышце, мускулатуре мускульного желудка и сердца. Больше всего гемоглобина в мышцах у птиц, летающих активным полетом, ныряющих и птиц высокогорий. Причем концентрация гемоглобина в крови всегда выше, чем в мышцах.
Интенсивность пищеварения у птиц очень высока. Высокий уровень обмена веществ связан с переработкой большого количества пищи.
Органы дыхания птиц также несут признаки приспособления к полету. С легкими связаны воздушные мешки, объем которых почти в 10 раз превышает объем легких. Воздушные мешки расположены между мышцами, среди внутренних органов и в полостях
Похожие вопросы