lessi
Профи
(608)
12 лет назад
Научитесь вычислять степени с натуральными показателями. При умножении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней складываются в^м+в^н=в^(м+н) . При делении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней вычитаются, причем из показателя делимого вычитается показатель делителя в^м: б^н=в^(м-н) . При возведении степени в степень получается степень числа, основание которого остается прежним, а показатели перемножаются (в^м) ^н=в^(мн) При возведении в степень произведения чисел в эту степень возводится каждый множитель. (авс) ^м=а^м*в^м*с^м
2
Раскладывайте многочлены на множители, т. е. представляйте их в виде произведения нескольких сомножителей – многочленов и одночленов. Выносите общий множитель за скобки. Выучите основные формулы сокращенного умножения: разность квадратов, квадрат суммы, квадрат разности, сумму кубов, разность кубов, куб суммы и разности. Например, м^8+2*м^4*н^4+н^8=(м^4)^2+2*м4*н^4+(н^4)^2. Именно эти формулы являются основными в упрощении выражений. Используйте способ выделения полного квадрата в трехчлене вида ах^2+вх+с
3
Как можно чаще сокращайте дроби. Например, (2*а^2*в) /(а^2*в*с) =2/(а*с) . Но помните, что сокращать можно только множители. Если числитель и знаменатель алгебраической дроби умножать на одно и то же число, отличное от нуля, то при этом значение дроби не изменится. Преобразовывать рациональные выражения можно двумя способами: цепочкой и по действиям. Предпочтительней второй способ, т. к. легче проверить результаты промежуточных действий.
4
Нередко в выражениях необходимо извлекать корни. Корни четной степени извлекаются только из неотрицательных выражений или чисел. Корни нечетной степени извлекаются из любых выражений.
Джалал Царёв
Знаток
(400)
8 лет назад
Научитесь вычислять степени с натуральными показателями. При умножении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней складываются в^м+в^н=в^(м+н) . При делении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней вычитаются, причем из показателя делимого вычитается показатель делителя в^м: б^н=в^(м-н) . При возведении степени в степень получается степень числа, основание которого остается прежним, а показатели перемножаются (в^м) ^н=в^(мн) При возведении в степень произведения чисел в эту степень возводится каждый множитель. (авс) ^м=а^м*в^м*с^м
2
Раскладывайте многочлены на множители, т. е. представляйте их в виде произведения нескольких сомножителей – многочленов и одночленов. Выносите общий множитель за скобки. Выучите основные формулы сокращенного умножения: разность квадратов, квадрат суммы, квадрат разности, сумму кубов, разность кубов, куб суммы и разности. Например, м^8+2*м^4*н^4+н^8=(м^4)^2+2*м4*н^4+(н^4)^2. Именно эти формулы являются основными в упрощении выражений. Используйте способ выделения полного квадрата в трехчлене вида ах^2+вх+с
3
Как можно чаще сокращайте дроби. Например, (2*а^2*в) /(а^2*в*с) =2/(а*с) . Но помните, что сокращать можно только множители. Если числитель и знаменатель алгебраической дроби умножать на одно и то же число, отличное от нуля, то при этом значение дроби не изменится. Преобразовывать рациональные выражения можно двумя способами: цепочкой и по действиям. Предпочтительней второй способ, т. к. легче проверить результаты промежуточных действий.
4
Нередко в выражениях необходимо извлекать корни. Корни четной степени извлекаются только из неотрицательных выражений или чисел. Корни нечетной степени извлекаются из любых выражений.
Екатерина Деревянко
Знаток
(428)
8 лет назад
Научитесь вычислять степени с натуральными показателями. При умножении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней складываются в^м+в^н=в^(м+н) . При делении степеней с одинаковыми основаниями получают степень числа, основание которого остается прежним, а показатели степеней вычитаются, причем из показателя делимого вычитается показатель делителя в^м: б^н=в^(м-н) . При возведении степени в степень получается степень числа, основание которого остается прежним, а показатели перемножаются (в^м) ^н=в^(мн) При возведении в степень произведения чисел в эту степень возводится каждый множитель. (авс) ^м=а^м*в^м*с^м
2
Раскладывайте многочлены на множители, т. е. представляйте их в виде произведения нескольких сомножителей – многочленов и одночленов. Выносите общий множитель за скобки. Выучите основные формулы сокращенного умножения: разность квадратов, квадрат суммы, квадрат разности, сумму кубов, разность кубов, куб суммы и разности. Например, м^8+2*м^4*н^4+н^8=(м^4)^2+2*м4*н^4+(н^4)^2. Именно эти формулы являются основными в упрощении выражений. Используйте способ выделения полного квадрата в трехчлене вида ах^2+вх+с
3
Как можно чаще сокращайте дроби. Например, (2*а^2*в) /(а^2*в*с) =2/(а*с) . Но помните, что сокращать можно только множители. Если числитель и знаменатель алгебраической дроби умножать на одно и то же число, отличное от нуля, то при этом значение дроби не изменится. Преобразовывать рациональные выражения можно двумя способами: цепочкой и по действиям. Предпочтительней второй способ, т. к. легче проверить результаты промежуточных действий.
4
Нередко в выражениях необходимо извлекать корни. Корни четной степени извлекаются только из неотрицательных выражений или чисел. Корни нечетной степени извлекаются из любых выражений.
Саша Пчелкина
Ученик
(199)
8 лет назад
Упростить выражение - это значит раскрыть все скобки (если это возможно), совершить все возможные действие и в результате должно получится маленькое выражение, решаемое всего несколькими действиями или даже одним.
Например: х+(2*3+7)
Упрощаем: х+(6+7)
И еще: х+13
Все. Это уже максимально упрощенное выражение. Решить его можно, только зная значение х (это именно выражение, а не равенство или уравнение)
удачи :)