Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиПоискОблакоVK ComboВсе проекты

Как взять производную дискретной функции?

Пользователь удален Ученик (100), закрыт 14 лет назад
Это было на математическом бое...
Лучший ответ
Leonid Высший разум (387977) 14 лет назад
От дискретной функции можно взять только дискретную производную. Как дельта Y делить на дельта Х. При этом надо заранее договориться, откуда идти по точкам будем. Потому что для каждой точки получаются разные производные слева и справа.
Остальные ответы
Филипп Ущев Ученик (222) 14 лет назад
Самый простой сособ - заменить производные разностными отношениями. Но тогда непонятно, как дифференцировать в точках, в которых значения функции неизвестны.
Есть и другие способы. Например, заменить точечно заданную функцию интерполяционным многочленом, который сам по себе есть непрерывно дифференциуемая функция, и "выдавать" его производные за проиводные самой функции.
Совсем недавно мне рассказали следующий забавный способ, тесно связанный с построением интерполяционного многочлена. Любой многочлен - линейная комбинация степеней 1, x, x^2, ..x^n. А можно в качестве "базиса" выбрать не степени, а функции вида x(k)=x*(x-h)*(x-2h)*...*(x-(k-1)*h). Фишка в том, что у такой функции разностные отношения вычисляются точно так же, как производные у степени x^k: сносим k вперед, а в показателе вычитаем 1. Это довольно удобно.
Похожие вопросы