Каститис
Просветленный
(46275)
16 лет назад
ЕВКЛИДОВА ГЕОМЕТРИЯ, геометрия, систематическое построение которой было осуществлено в «Началах» Евклида. Возникновение Евклидовой геометрии связано с наглядными представлениями об окружающем нас мире (напр. , прямые линии — натянутые нити и т. п. ) Длительный процесс углубления наших представлений о пространстве привел к другим геометрическим теориям, отличным от Евклидовой геометрии.
АЛГЕБРА (араб.) , часть математики, развивающаяся в связи с задачей о решении алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности. В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений) , действительных или мнимых. В нач. 19 в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, напр. , над многочленами, векторами, матрицами и т. д.
МАТЕМАТИКА (греч. mathematike, от mathema — наука) , наука, в которой изучаются пространственные формы и количественные отношения. До нач. 17 в. математика — преимущественно наука о числах, скалярных величинах и сравнительно простых геометрических фигурах; изучаемые ею величины (длины, площади, объемы и пр. ) рассматриваются как постоянные. К этому периоду относится возникновение арифметики, геометрии, позднее — алгебры и тригонометрии и некоторых частных приемов математического анализа.
так что развитие наук было при греках и арабах... .
дима иванов
Ученик
(169)
7 лет назад
Люди учились считать тогда же, когда они учились говорить, и первые названия чисел – ровесники первых слов.
Фридрих Энгельс писал, что десять пальцев на руках – самый древний источник математических знаний.
Самые древние дошедшие до нас математические документы – это хозяйственные записи вавилонян. Они сделаны за шесть тысяч лет до нашей эры, то есть восемь тысячелетий назад!
Еще через две тысячи лет в вавилонских клинописных таблицах мы встречаем уже не только хозяйственные расчеты, связанные с торговыми сделками или с записями домашних расходов, а и настоящие задачи по математике. Расцвет математики вавилонян – это эпоха Самураи. Здесь мы видим уже сложные алгебраические действия, например, решение квадратных и кубических уравнений. Эти задачи теперь умеют решать десятиклассники.
Математика не родилась сразу. В древнем Египте, например, знали только такие дроби, у которых в числителе единица: 1/2, 1/3, 1/17, 1/298. Это очень усложняло вычисления. Не так давно люди не знали ни десятичных дробей, ни действий с ними. Десятичные дроби изобрел самаркандский математик Джемшид ибо-Самосуд аль-Каши всего пятьсот лет назад, а в употребление у европейцев их ввел еще на полтораста лет позднее фламандский математик Стивен.
В математике делаются открытия и сейчас; она, как и другие науки, все время движется вперед и развивается.
Еще в самые далекие времена счет считался математической деятельностью. Он был просто необходим, к примеру, чтобы заниматься торговлей или даже скотоводством, ведь даже выгуливая скот на пастбище, необходимо было следить за их количеством. Чтобы было легче справляться с данной задачей, использовались части тела, например, пальцы на руках и ногах. Тому подтверждением являются наскальные рисунки, изображающие числа, в виде изображенных в ряд нескольких пальцев. Иные факты подтверждают появление математики и счета.
Одними из первых существенных открытий являются представление о самом числе, а также изобретение основных четырех действий, знакомых сейчас нам всем – умножение, деление, сложение и вычитание. Первыми же геометрическими достижениями являются самые простые понятия, такие как прямая и окружность. Дальнейшее же возникновение математики и развитие проходило благодаря египтянам и вавилонянам, примерно, 3000 лет до нашей эры. Сохранившиеся до наших дней глиняные таблички с текстами дают нам представления о проводимых вычислениях. Простейшая арифметика была необходима при обмене денег, расчетах за товар, для вычисления процентов, налогов и прочего. Различного виды строительства вынуждали проводить многочисленные геометрические, а также арифметические задачи. Еще одной достаточно важной задачей был календарь, который нужно было рассчитать, чтобы определять сроки работ, а также праздников.
Наука о количественных отношениях возникла в глубокой древности, как только встала необходимость вести счет и простейшие измерения.
Поэтому можно сказать, что появилась математика еще у первобытных народов. Племя инков придумало удивительные знаки - узелковую письменность или кипу, где система цветных шнуров и замысловатых узелков вела счет доходам и расходам.
Из Древнего Египта дошли до нас математические тексты решений отдельных задач. Египтянам были знакомы дроби, способы нахождения неизвестных чисел, геометрические расчеты площадей и объемов. Так называемый папирус Ринда был написан за 2 тысячи лет до н. э.
Междуречье, где культура была особенно высока, оставило нам глиняные таблички библиотеки Ашшурбанипала, свидетельствующие о высоком развитии математической науки.