Natalia Belska
Гений
(65099)
2 года назад
(x^2 + 2x)^2 - 4*(x + 1)^2 + 7 = 0
[(x^2 + 2x + 1) - 1]^2 - [4*(x+1)^2 - 4] + 3 = 0
[(x+1)^2 - 1]^2 - 4*[(x^2 - 1] + 3 = 0
[(x+1)^2 - 1] = t =>
t^2 - 4*t + 3 = 0 ----> t1 = 1; t2 = 3
___ t1 = 1
[(x+1)^2 - 1] = 1
(x+1)^2 = 2
(x+1) = + - V2
x1 = - 1 - V2
x2 = - 1 + V2
___ t2 = 3
[(x+1)^2 - 1] = 3
(x+1)^2 = 4
(x+1)^2 - 2^2 = 0
((x+1) + 2)((x+1) - 2) = 0
(x+3)(x-1) = 0
x3 = - 3
x4 = 1
Проверка при х = 1
(x^2 + 2x)^2 - 4*(x + 1)^2 + 7 = 0
(1+2)^2 - 4*(1+1)^2 + 7 = 0
3^2 - 4*4 + 7 = 0
9 - 16 + 7 = 0
0 = 0