Задачи по геометрии, нужно свериться
3. Площадь осевого сечения конуса равна 30, а площадь его основания равна 25п. Найдите объём конуса.
4. В куб вписан шар. Найдите объём шара, если объём куба равен 24.
Problem 3:
To find the volume of the cone, we'll use the given information about the area of its axial section and the area of its base.
Step 1: Find the radius of the base.
The area of the base of the cone is given by:
[
S{\text{base}} = \pi r^2 = 25\pi.
\]
Solving for \( r \):
\[
\pi r^2 = 25\pi \implies r^2 = 25 \implies r = 5.
\]
**Step 2: Find the height of the cone.**
The axial (central) section of the cone is a triangle with base \( 2r \) and height \( h \). The area of the axial section is:
\[
A{\text{axial}} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 2r \times h = r h = 30.
\]
Using \( r = 5 \):
[
5h = 30 \implies h = 6.
\]
Step 3: Calculate the volume of the cone.
The volume \( V \) of a cone is:
[
V = \frac{1}{3} \pi r^2 h = \frac{1}{3} \pi (5)^2 (6) = \frac{1}{3} \pi (25)(6) = 50\pi.
\]
Answer: Problem 3 Answer: The volume of the cone is 50 × π.
---
Problem 4:
To find the volume of the sphere inscribed in the cube, we'll use the volume of the cube to find its side length and then calculate the sphere's volume.
Step 1: Find the side length of the cube.
The volume of the cube is:
[
V{\text{cube}} = s^3 = 24.
\]
Solving for \( s \):
\[
s = \sqrt[3]{24}.
\]
**Step 2: Find the radius of the sphere.**
The diameter of the inscribed sphere is equal to the side length of the cube, so the radius \( r \) is:
\[
r = \frac{s}{2} = \frac{\sqrt[3]{24}}{2}.
\]
**Step 3: Calculate the volume of the sphere.**
The volume \( V{\text{sphere}} \) is:
[
V{\text{sphere}} = \frac{4}{3} \pi r^3 = \frac{4}{3} \pi \left( \frac{s}{2} \right)^3 = \frac{4}{3} \pi \left( \frac{s^3}{8} \right) = \frac{\pi s^3}{6}.
\]
Substituting \( s^3 = 24 \):
\[
V{\text{sphere}} = \frac{\pi \times 24}{6} = 4\pi.
\]
Answer: Problem 4 Answer: The volume of the sphere is 4 × π.
Problem 3 Answer: The volume of the cone is 50 × π.
Problem 4 Answer: The volume of the sphere is 4 × π.
Напиши свои ответы, сверимся)
Определяем металл:
В комплексе массовая доля калия 19,9413%.
После сплавления одно из соединений содержит 67,24% калия.
Находим металл:
Расчёты показывают, что это осмий (Os).
Определяем бинарные соединения:
Kalийосмий K2Os (массовая доля K = 67,24%).
Натрийосмий Na2Os.
Определяем комплекс:
Вероятный комплекс K3[OsCl6].
Уравнение реакции:
K3[OsCl6] + Na → K2Os + Na2Os + Os.