Помогите решить, пожалуйста

Ответ. 1. ((x*y-y^2-x*y+x^2)*(x*y))/((x*y)*(x+y))=(x-y);
2. x^2+2*y=-2; x+y=-1; x^2-2*x=0; x1=0; x2=2; y1=-1; y2=-3;
[(x-y)\x - (y-x)\y] : (x+y)\xy =
= [(x-y)\x + (x-y)\y] : (x+y)\xy =
= [(x-y) * (1\x + 1\y] : (x+y)\xy =
= [(x-y) * (x+y)\xy] * xy\(x+y) =
= (x-y) * (x+y) * xy \ [(x+y) * xy] =
= (x-y) * (x+y)\(x+y) * xy\xy = x-y
{ x^2 + 2y = -2
{ x + y = -1 -------------> (*) на 2 --------> 2x + 2y = -2
=> вычесть уравнения:
(x^2 + 2y) - (2x + 2y) = (-2) - (-2)
x^2 - 2x = 0
x * (x - 2) = 0
x = 0 -------------> { x + y = -1 -------> y = -1
(x - 2) = 0 -------> x = 2 -------> { x + y = -1 ------> y = - 1 - x = -1 - 2 = -3
=>
x = 0 -------> y = -1
x = 2 -------> y = -3
2. х=0; у=-1
к 1
1)x-y/x-y-x/y=y(x-y)-x(y-x)/xy=yx-y^2-xy+x^2/xy=x^2-y^2/xy
2)x^2-y^2/xy деление x+y/xy=(x-y)(x+y)xy/xy*(x+y)=x-y
2)y = -1 - x
x^2 - 2 - 2x = -2
---------------------
x1 = 0
y1 = -1
------------
x2 = 2
y2 = -3