Алгебра ЕГЭ 19 задание
На какое наибольшее число натуральных слагаемых можно разложить число 96 так, чтобы все слагаемые были больше 1 и попарно взаимно просты?
На какое наибольшее число натуральных слагаемых можно разложить число 96 так, чтобы все слагаемые были больше 1 и попарно взаимно просты?
Ответ: на семь слагаемых.
Решение. Приведём пример разбиения числа 96 на семь слагаемых:
9 6 = 2 + 5 + 7 + 11 + 13 + 17 + 41.
Если слагаемых больше, то среди них не менее восьми нечётных ( если их семь, то сумма нечётна). Заменим каждое из них на наименьший простой сомножитель. При этом сумма не увеличится, и все слагаемые будут различны. Но сумма восьми наименьших нечётных простых чисел равна 98.
Олимпиадные задания по математике для 10-11 классов:
http://nsportal.ru/shkola/algebra/library/2013/01/12/olimpiadnye-zadaniya-po-matematike-dlya-10-11-klassov
Скачать:
olimpiadnye_zadaniya_10-11_klass.docx