Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Геомтерия 7 класс

jsskish jdosoi Ученик (90), открыт 2 дня назад
в прямоугольном треугольнике авс с прямым углом а известно , что гипотенуза равна 12см, а один из острых углов равне 45*. найдите расстояние от точки а до прямой вс.
4 ответа
Ass_man228 Профи (890) 2 дня назад
В прямоугольном треугольнике ABC с прямым углом в A и острым углом ∠ ACB = 45^\circ , мы можем использовать свойства треугольника для нахождения расстояния от точки A до прямой BC .

Так как один из острых углов равен 45^\circ , это значит, что второй острый угол также равен 45^\circ . Следовательно, треугольник ABC является равнобедренным, и его катеты равны.

Обозначим длину катетов как a . По теореме Пифагора имеем:

a² + a² = 12²


2a² = 144



a² = 72



a = 6√(2) см


Теперь, чтобы найти расстояние от точки A до прямой BC , мы можем воспользоваться тем, что в равнобедренном прямоугольном треугольнике высота, проведенная из прямого угла на гипотенузу, делит гипотенузу пополам. Длина высоты h может быть найдена по формуле:

h = a² / c


где c — длина гипотенузы. Подставим значения:

h = (6√(2))² / 12 = 72 / 12 = 6 см

Таким образом, расстояние от точки A до прямой BC равно 6 см.
Урунбек Шахаджонов Ученик (177) 2 дня назад
Один узбек плус один точик равно 2 узбек точик☝️☝️☝️☝️☝️☝️
Ирина Высший разум (155125) 2 дня назад
∆авс-равнобедренный с <в=<с=45; => аh делит вс пополам вh=ch=12:2=6;
ah=√6*6=√36=6
Похожие вопросы