Top.Mail.Ru
Ответы

Помогит... геометрия...

Докажите, что прямая проходящая через точку пересечение диагоналей равнобедренной трапеций и точку пересечения продолжений ее боковых сторон перепендикуляпна оснаваниям трапеций и делить их пополам.

По дате
По рейтингу
Аватар пользователя
Профи
13лет

рапецией называется четырехугольник, у которого одна пара параллельных сторон.
Определение 6. Основаниями трапеции называют её параллельные стороны.
Определение 7. Боковыми сторонами трапеции называют её непараллельные стороны.
Параллельные стороны не могут быть равными, т. к. в противном случае мы имели бы параллелограмм. Поэтому одну из них мы назовем большим, вторую - малым основанием трапеции. Высотой трапеции можно назвать любой отрезок перпендикуляра, проведенного из вершин на соответственно противоположную сторону (для каждой вершины есть две противоположные стороны) , заключенный между взятыми вершиной и противоположной стороной. Но можно выделить "особый вид" высот.
Определение 8. Высотой основания трапеции называют отрезок прямой, перпендикулярной основаниям, заключенный между основаниями.
Теорема 7. Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство. Пусть дана трапеция АВСD и средняя линия КМ. Через точки В и М проведем прямую. Продолжим сторону AD через точку D до пересечения с ВМ. Треугольники ВСм и МРD равны по стороне и двум углам (СМ=МD, РВСМ=РМDР - накрестлежащие, РВМС=РDМР - вертикальные) , поэтому ВМ=МР или точка М - середина ВР. КМ является средней линией в треугольнике АВР. По свойству средней линии треугольника КМ параллельна АР и в частности АD и равна половине АР:

Теорема 8. Диагонали делят трапецию на четыре части, две из которых, прилежащие к боковым сторонам, равовелики.
Напомню, что фигуры называются равновеликими, если у них одинаковая площадь. Треугольники АВD и АСD равновелики: у них равные высоты (обозначенные желтым) и общее основание. Эти треугольники имеют общую часть АОD. Их площадь можно разложить так:

Теорема 9. В трапеции середины оснований и точка пересечения диагоналей лежат на одной прямой. Доказательство.

Виды трапеций:
Определение 9. (рис 1) Остроугольной трапецией называется трапеция, у которой углы, прилегающие к большему основанию острые.
Определение 10. (рис 2) Тупоугольной трапецией называется трапеция, у которой один из углов, прилегающих к большему основанию тупой.
Определение 11. (рис 4) Прямоугольной называется трапеция, у которой одна боковая сторона перпендикулярна основаниям.
Определение 12. (рис 3) Равнобедренной (равнобокой, равнобочной) называется трапеция, у которой боковые стороны равны.

Свойства равнобокой трапеции:
Теорема 10. Углы, прилежащие к каждому из оснований равнобокой трапеции, равны.
Доказательство. Докажем, например, равенство углов А и D при большем основании AD равнобокой трапеции АВСD. Для этой цели проведем через точку С прямую параллельную боковой стороне АВ. Она пересечет большое основание в точке М. Четырехугольник АВСМ являеся параллелограммом, т. к. по построению имеет две пары параллельных сторон. Следовательно, отрезок СМ секущей прямой, заключенный внутри трапеции равен её боковой стороне: СМ=АВ. Отсюда ясно, что СМ=СD, треугольник СМD - равнобедренный, РСМD=РСDM, и, значит, РА=РD. Углы, прилежащие к меньшему основанию, также равны, т. к. являются для найденных внутренними односторонним и имеют в сумме два прямых.
Теорема 11. Диагонали равнобокой трапеции равны.
Доказательство. Рассмотрим треугольники АВD и ACD. Она равны по двум сторонам и углу между ними (АВ=СD, AD - общая, углы А и D равны по теореме 10). Поэтому АС=BD.

Теорема 12. Если продолжить стороны равнобочной трапеции до их пересечения, то вместе с большим основанием трапеции они образуют равнобедренный треугольник.
Доказательство. По теореме 10 углы А и D равны. Поэтому треугольник АDК является равнобедренным по признаку: если в треугольнике два угла равны, то он равнобедренный. Доказательство этого признака вы можете найти в теме Треугольник.