Известны математические ожидания и дисперсии двух независимых случайных величин X и Y.Найти мат. ожидание и дисперсию
Известны математические ожидания и дисперсии двух независимых случайных величин X и Y: M(x)=2, M(Y)=3, D(X)=7, D(Y)=9.Найти математическое ожидание и дисперсию случайное величины 5x^2- xy+ 8
По дате
По рейтингу
Матожидание - это просто среднее, поэтому просто складывается.
Дисперсия - сложнее. Но если ковариация нулевая они складываются тоже, потому что имеет смысл меры разброса; коэффициенты при этом вытаскиваются в квадрате. Постоянная имеет нулевой разброс, поэтому D(8) = 0.
Ну вот решение
D = M(x^2) - M^2(x) => M(x^2) = D + M^2 => M(x^2) = 7 + 4 = 11
M = 5M(x^2) - M(xy) + 8 = 5*11 - MxMy +8 = 55 -6 +8 = 57
D = 25D(x^2) -DxDy + 0 = 1225 - 63 = 1162
просто откройте свойства этих величин