Дополнен 1 месяц назад
import sys
from PyQt5.QtWidgets import QApplication, QLabel, QPushButton, QVBoxLayout, QHBoxLayout, QFileDialog, QMainWindow,QWidget
from PyQt5.QtGui import QPixmap, QImage
import requests
from io import BytesIO
from PIL import Image
class FaceDetectionApp(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Распознавание лиц")
self.resize(800, 600)
self.init_ui()
def init_ui(self):
self.image_label = QLabel("Загрузите изображение")
self.image_label.setFixedSize(600, 400)
self.image_label.setStyleSheet("border: 1px solid black;")
self.image_label.setScaledContents(True)
self.upload_button = QPushButton("Загрузить изображение")
self.upload_button.clicked.connect(self.load_image)
self.detect_button = QPushButton("Отправить на сервер")
self.detect_button.clicked.connect(self.send_image)
self.detect_button.setEnabled(False)
layout = QVBoxLayout()
layout.addWidget(self.image_label)
layout.addWidget(self.upload_button)
layout.addWidget(self.detect_button)
container = QWidget()
container.setLayout(layout)
self.setCentralWidget(container)
Дополнен 1 месяц назад
def load_image(self):
options = QFileDialog.Options()
file_path, _ = QFileDialog.getOpenFileName(self, "Выберите изображение", "", "Images (*.png *.xpm *.jpg)",options=options)
if file_path:
self.image_path = file_path
pixmap = QPixmap(file_path)
self.image_label.setPixmap(pixmap)
self.detect_button.setEnabled(True)
def send_image(self):
url = "http://127.0.0.1:5000/detect_faces"
try:
with open(self.image_path, 'rb') as image_file:
response = requests.post(url, files={"image": image_file})
if response.status_code == 200:
content_type = response.headers.get('Content-Type')
if content_type == 'image/jpeg':
result_image = Image.open(BytesIO(response.content))
result_image = result_image.convert("RGBA")
data = result_image.tobytes("raw", "RGBA")
qimage = QImage(data, result_image.width, result_image.height, QImage.Format_RGBA8888)
pixmap = QPixmap.fromImage(qimage)
self.image_label.setPixmap(pixmap)
else:
self.image_label.setText("Ответ не является изображением")
else:
self.image_label.setText(f"Ошибка сервера: {response.status_code}")
except Exception as e:
self.image_label.setText(f"Ошибка: {str(e)}")
if __name__ == "__main__":
app = QApplication(sys.argv)
window = FaceDetectionApp()
window.show()
sys.exit(app.exec_())
обучение:
from ultralytics import YOLO
import subprocess
import os
import glob
import sys
bl = "run/detect/train/weight/ best.pt "
subprocess.run (f" yolo task = detect mode = train data={"dataset"}/data.yaml model = ' yolo11n.pt ' epochs = 50 imgsz = 640", shell=True)
subprocess.run (f" yolo task = detect mode = val model = {bl} data = {"dataset"}/data.yaml", shell=True)
subprocess.run (f" yolo task = detect mode = predict model = {bl} conf = 0.25 source = {"dataset"}/train/images save = True", shell=True)
Сервер:
from flask import Flask, request, send_file, jsonify
from ultralytics import YOLO
from PIL import Image
import subprocess
import io
import glob
import os
app = Flask(__name__)
model = YOLO("runs/detect/train/weights/ best.pt ")
@app.route('/detect_faces', methods=['POST'])
def detect_faces():
if 'image' not in request.files:
return jsonify({"error": "No image provided"}), 400
image = Image.open (request.files ['image'] ).convert('RGB')
temp_image_path = "temp_image.jpg"
image.save(temp_image_path)
subprocess.run (f"yolo task=detect mode=predict model='runs/detect/train/weights/ best.pt ' conf=0.1 source={temp_image_path} save=True", shell=True)
predict_dirs = glob.glob("runs/detect/predict*/")
if predict_dirs:
latest_predict_dir = max(predict_dirs, key=os.path.getmtime)
img_path = os.path.join(latest_predict_dir, os.path.basename(temp_image_path))
img_path_with_new_extension = os.path.splitext(img_path)[0] + '.jpg'
result_image = Image.open (img_path_with_new_extension)
byte_io = io.BytesIO()
result_image.save(byte_io, 'JPEG')
byte_ io.seek (0)
return send_file(byte_io, mimetype='image/jpeg')
return jsonify({"error": "Prediction output not found."}), 500
@app.route('/', methods=['GET'])
def index():
return jsonify({"message": "API для обнаружения объектов. Отправьте POST запрос на /detect_faces с изображением."})
if __name__ == '__main__':
app.run (debug=True)