Mail.RuПочтаМой МирОдноклассникиИгрыЗнакомстваНовостиПоискВсе проекты

Что такое среднее арифметическое?

Ученик (204), закрыт 7 лет назад
Лучший ответ
это когда у тебя есть несколько чисел, ты их складываешь, а затем делишь на их количество! допустим 25 24 65 76,складываешь: 25+24+65+76:4=среднее арифметическое!
Остальные ответы
Сумму чисел делишь на их количество
это когда все складываешь и делишь
если не ошибаюсь, это когда сумму чисел складываешь и делишь на количество самих чисел ...
ну это типа 2+8=10 а среднее 5
Среднее между максимум и минимум (слогаются все числовые показатели и делятся на их количество
)
Число Среднее (Mean), Среднее Арифметическое (Arithmetic Mean) - усредненное значение, характеризующее какую-либо группу наблюдений; вычисляется путем сложения чисел из этого ряда и последующего деления полученной суммы на количество просуммированных чисел. Если одно или несколько чисел, входящих в группу, значительно отличаются от остальных, то это может привести к искажению получаемого среднего арифметического значения. Поэтому в данном случае предпочтительнее пользоваться средним геометрическим значением (geometric mean) (оно вычисляется аналогичным образом, но здесь определяется среднее арифметическое логарифмов величин наблюдений, а затем находится его антилогарифм) или - что применяется чаще всего - находить среднее значение (median) (среднее значение из серии величин, расположенных в порядке возрастания) . Еще одним методом получения среднего значения какой-либо величины из группы наблюдений является определение моды (mode) - показателя (или набора показателей) , оценивающего наиболее частые проявления какой-либо переменной величины; чаще этот метод используется для определения среднего значения в нескольких сериях опытов.
Например: числа 1 и 99, складываем и делим на два:
(1+99)/2=50 - среднее арифметическое
Если взять числа (1,2,3,15,59)/5=16 - среднее арифметическое, и т. д. и т. п.
Вячаслав богданов ответил неправильно!!! !
Ндо своими слвами!
Среднее арифметическое - это среднее значение между двумя значениями.... Находится как суму чисел деленное на ихуоличество.. . Или просто, если два числа находятся вокруг когото числа (вернее между ними в порядке есть какое то число) , то это число и будет ср. ар. !

6 + 8... ср ар = 7
Среднее арифметическое набора чисел определяется как их сумма, деленная на их количество. То есть сумма всех чисел набора делится на количество чисел в этом наборе.

Наиболее простой случай - найти среднее арифметическое двух чисел x1 и x2. Тогда их среднее арифметическое X = (x1+x2)/2. Например, X = (6+2)/2 = 4 - среднее арифметическое чисел 6 и 2.
2
Общая формула для нахождения среднего арифметического n чисел будет выглядеть так: X = (x1+x2+...+xn)/n. Ее можно также записать в виде: X = (1/n)Σxi, где суммирование ведется по индексу i от i = 1 до i = n.

К примеру, среднее арифметическое трех чисел X = (x1+x2+x3)/3, пяти чисел - (x1+x2+x3+x4+x5)/5.
3
Интерес представляет ситуация, когда набор чисел представляет собой члены арифметической прогрессии. Как известно, члены арифметической прогрессии равны a1+(n-1)d, где d - шаг прогрессии, а n - номер члена прогрессии.

Пусть a1, a1+d, a1+2d,...a1+(n-1)d - члены арифметической прогрессии. Их среднее арифметическое равно S = (a1+a1+d+a1+2d+...+a1+(n-1)d)/n = (na1+d+2d+...+(n-1)d)/n = a1+(d+2d+...+(n-2)d+(n-1)d)/n = a1+(d+2d+...+dn-d+dn-2d)/n = a1+(n*d*(n-1)/2)/n = a1+dn/2 = (2a1+d(n-1))/2 = (a1+an)/2. Таким образом среднее арифметическое членов арифметической прогрессии равно среднему арифметическому его первого и последнего членов.
4
Также справедливо свойство, что каждый член арифметической прогрессии равен среднему арифметическому предыдущего и последующего члена прогрессии: an = (a(n-1)+a(n+1))/2, где a(n-1), an, a(n+1) - идущие друг за другом члены последовательности.
Сре́днее арифмети́ческое (в математике и статистике) — одна из наиболее распространенных мер центральной тенденции, представляющая собой сумму всех зафиксированных значений, деленную на их количество.
У этого термина существуют и другие значения, см. среднее значение.
Сре́днее арифмети́ческое (в математике и статистике) — одна из наиболее распространённых мер центральной тенденции, представляющая собой сумму всех зафиксированных значений, делённую на их количество.

Предложена (наряду со средним геометрическим и средним гармоническим) еще пифагорейцами [1].

Частными случаями среднего арифметического являются среднее (генеральной совокупности) и выборочное среднее (выборки).

Содержание [показать]
Введение [править | править вики-текст]
Обозначим множество данных X = (x1, x2, …, xn), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (\bar{x} \,, произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E{xi} есть математическое ожидание этой выборки.

На практике разница между μ и \bar{x} \, в том, что μ является типичной переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда \bar{x} \, (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

\bar{x} = \frac{1}{n}\sum_{i=1}^n x_i = \frac{1}{n} (x_1+\cdots+x_n).
Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины.

Примеры [править | править вики-текст]
Для трёх чисел необходимо сложить их и разделить на 3:
\frac{x_1 + x_2 + x_3}{3}.
Для четырёх чисел необходимо сложить их и разделить на 4:
\frac{x_1 + x_2 + x_3 + x_4}{4}.
Или проще 5+5=10, 10:2. Потому что мы складывали 2 числа, а значит, сколько чисел складываем, на столько и делим.

Непрерывная случайная величина [править | править вики-текст]
Для непрерывно распределённой величины f(x) среднее арифметическое на отрезке [a;b] определяется через определённый интеграл: Некоторые проблемы применения среднего Отсутствие робастности [править Основная статья: Робастность в статистикеХотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическ
Это складываеш числа и их делиш соклько было вот так 33+66+99= складываеш 33+66+99= 198 и делиш сколько было зачит у нас 3 числа это 33 66 и 99 и надо что у нас получилось поделить вот так : 33+66+99=198:3=66 это средня орефметическое
Похожие вопросы
Также спрашивают