Mail.ruПочтаМой МирОдноклассникиИгрыЗнакомстваНовостиПоискВсе проекты

Пересечение биссектрисы и серединного перпендикуляра

Знаток (293), закрыт 1 месяц назад
Докажите, что в треугольнике ABC точка пересечения биссектрис угла A со серединным перпендикуляром к стороне BC принадлежит окружности, описанной вокруг треугольника ABC.
Одна из самых ненавистных тем, буду очень рад, если поможете)))
Лучший ответ
Остальные ответы
Комментарий удален
Татьяна Козлова Искусственный Интеллект (215659) Пардон, вообразила неверный чертеж... нарисовала на листочке - стало лучше) Обозначим М - точка пересечения биссектрисы с окружностью. Т. к. углы ВАМ и САМ равны, то равны и дуги, на которые они опираются. Вам осталось доказать, что середина дуги ВС равноудалена от концов отрезка ВС, т. е. лежит на серединном перпендикуляре к этому отрезку.
Похожие вопросы
Также спрашивают