Помогите решить билеты
Экзаменационные билеты по геометрии. 7 класс.
Билет №1.
1. Точки. Прямые. Отрезки.
2. Сформулировать и доказать теорему, выражающую третий признак равенства треугольников.
3. Задача на тему «Смежные углы». Найдите величины смежных углов, если один из них в 5 раз больше другого.
Билет №2.
1. Виды треугольников.
2. Доказать, что если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Задача на тему «Признаки равенства треугольников». Отрезки AC и BM пересекаются и точкой пересечения делятся пополам. Доказать, что треугольник ABC равен треугольнику CMA.
Билет №3.
1. Линии в треугольнике (медиана, биссектриса, высота).
2. Доказать, что если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
3. Задача на тему «Окружность». На окружности с центром О отмечены точки А и В так, что угол AOB прямой. Отрезок ВС - диаметр окружности. Докажите, что хорды AB и AC , равны.
Билет №4.
1. Наклонная, проведенная из данной точки к прямой, расстояние от точки до прямой.
2. Доказать, что если при пересечении двух прямых секущей сумма односторонних углов равна 180, то прямые параллельны.
3. Задача на тему «Внешний угол треугольника». Два внешних угла треугольника при разных вершинах равны. Периметр треугольника равен 74 см, а одна из сторон равна 16 см. Найдите две другие стороны треугольника.
Билет №5.
1. Определение параллельных прямых, параллельные отрезки.
2. Сформулировать и доказать первый признак равенства треугольников.
3. Задача на тему «Треугольники». В равнобедренном треугольнике ABC с основанием ВС проведена медиана AM. Найти медиану AM, если периметр треугольника ABC равен 32 см, а периметр треугольника ABM равен 24 см.
Билет №6.
1. Луч Угол. Виды углов.
2. Свойство углов при основании равнобедренного треугольника.
3. Задача на тему «Свойства параллельности двух прямых». Сумма накрест лежащих углов при пересечении двух параллельных прямых секущей равна 210. Найти эти углы.
Билет №7.
1. Что такое секущая. Назовите пары углов, которые образуются при пересечении двух прямых секущей.
2. Сформулировать и доказать теорему, выражающую второй признак равенства треугольников.
3. Задача на тему «Признаки параллельности двух прямых».
Отрезок АМ-биссектриса треугольника ABC. Через точку M проведена прямая, параллельная AC и пересекающая сторону AB в точке E. Доказать, что треугольник AME равнобедренный.
Билет №8.
1. Определение окружности, центра, радиуса, хорды и диаметра.
2. Теорема о сумме углов треугольника.
3. Задача на тему «Второй признак равенства треугольников». На биссектрисе угла А взята точка E, а на сторонах этого угла точки В и С такие, что угол AEC равен углу AEB. Доказать, что BE равно CE.
Билет №9.
1. Аксиомы геометрии. Аксиома параллельных прямых и свойства из нее вытекающие.
2. Свойства прямоугольных треугольников.
3. Задача на тему «Соотношения между сторонами и углами треугольника».
Доказать, что середины сторон равнобедренного треугольника являются вершинами другого равнобедренного треугольника.
Билет №10.
1. Какой треугольник называется прямоугольным. Стороны прямоугольного треугольника.
2. Доказать, что при пересечении двух параллельных прямых секущей соответственные углы равны.
3. Задача на тему «Смежные углы». Найти смежные углы, если один из них на 45 больше другого.
Билет №11.
1. Смежные углы (определение и свойства).
2. Доказать признак равенства прямоугольных треугольников по гипотенузе и катету.
3. Задача на тему «Свойства равнобедренного треугольника».
Докажите, что если биссектриса треугольника совпадает с его высотой, то треугольник равнобедренный.
Зачем перепечатывать учебник? Может, просто возьмете готовый?