Top.Mail.Ru
Ответы

Решите пожалуйста(если можно, то на листке)

log2/3x - 6log3x + 5 >= 0

По дате
По рейтингу
Аватар пользователя
Ученик

Что это😰

Аватар пользователя
Мыслитель

Бу бу бу

Аватар пользователя
Мыслитель

скинь исходник

Аватар пользователя
Гуру

#### Решение неравенства

Чтобы решить неравенство **log2/3x - 6log3x + 5 >= 0**, мы можем использовать логарифмические свойства для упрощения и решения для переменной x.

Сначала давайте перепишем выражение, используя логарифмические свойства.

Мы можем переписать выражение следующим образом:
**log(2/3x) - log((3x)^6) + 5 >= 0**

Дальнейшее упрощение:
**log(2/3x) - log(729x^6) + 5 >= 0**

Теперь мы можем использовать свойства логарифмов для упрощения выражения.

#### Применяя логарифмические свойства

Мы можем использовать свойство, согласно которому **log(a) - log(b) = log(a/b)**.

Таким образом, неравенство становится:
**log(2/3x / 729x^6) + 5 >= 0**

Упростим логарифмическое выражение:
**log(2/3x / 729x^6) + 5 >= 0**

#### Продолжаем упрощение

Теперь давайте еще больше упростим логарифмическое выражение для вычисления x.

Это упрощает задачу до:
**log(2/2187x ^ 7) + 5 >= 0**

Теперь мы можем использовать свойство, которое **log(a) + log(b) = log(ab)** для упрощения выражения.

#### Заключительные шаги

Применив логарифмические свойства, мы получим:
**log(10(x)) + 5 >= 0