Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Решение задачи в виде уравнения

Екатерина Рустам Ученик (88), на голосовании 18 часов назад
Можно ли расположить 166 книг на трёх полках так, чтобы на первой полке было на 12 книг больше, чем на второй, и на 6 книг меньше, чем на третьей?
Голосование за лучший ответ
FILIN Искусственный Интеллект (145022) 1 месяц назад
х + (х - 12) + (х + 6) = 166 => 3x = 172. Число 172 нацело не делится на 3.
Ответ: нельзя.
Екатерина РустамУченик (88) 1 месяц назад
спасибо ?
Евгений Толкачев Ученик (143) 1 месяц назад
Предположим, что x - количество книг на первой полке, тогда на второй (x-12) книг, а на третьей (x+6) книг.
Всего книг на трех полках: 166
Составим уравнение:
x+(x-12)+(x+6)=166
3x-6=166
x=172/3
x=57 1/3
Следовательно, на трех полках таким образом расположить книги нельзя.
Ответ: нет.
Екатерина РустамУченик (88) 1 месяц назад
спасибо огромное!!
suffix Просветленный (32439) 1 месяц назад
х - книг на первой полке
у - книг на второй полке
z - книг на третьей полке

Тогда:

х - у = 12
z - x = 6
x + y + z = 166

x - y + z = 166
z - x = 6
2x + z = 178

x - y = 12
z - x = 6
3x = 172

x = 172/3 Нацело не делится, значит:

Ответ: Нельзя
Похожие вопросы