m = ∫μdl = ∫x⁴dl
(dl)² = (dx)²+(dy)² = (dx)²(1+(dy/dx)²)
dy/dx = d/dx(2ln(x)) = 2/x
dl = √(1+4/x²)dx = xˉ¹√(x²+4)dx
m = ∫x⁴xˉ¹√(x²+4)dx = ∫x³√(x²+4)dx = ∫√(x²+4)½x²dx²
Замена: ξ = x²+4 x² = ξ-4
½∫√ξ(ξ-4)dξ = ½(∫√(ξ³)dξ-4∫√ξdξ) = ξ²√ξ/5-4ξ√ξ/3 = ξ√ξ(ξ/5-4/3) = √(x²+4)³((x²+4)/5-4/3)
Подстановка: верхний предел x=2, нижний предел x=1
m = 8√8(8/5-4/3)-5√5(5/5-4/3) = 8√8(24-20)/15+5√5/3
m=32√8+5√5/3
m=97.96