Top.Mail.Ru
Ответы

Помогите решить вероятности🥲🥲

Имеются три ящика. В первом ящике 8 белых и 4 красных шара, во
втором – 6 белых и 6 красных шаров, в третьем – 4 белых и 8 красных
шаров. Выбирают наугад ящик и вынимают из него шар. а) Какова
вероятность того, что он белый? б) Извлечённый шар белый. Какова
вероятность того, что он из третьего ящика?

По дате
По рейтингу
Аватар пользователя
Мудрец
4мес

а) Вероятность того, что шар белый:

* Обозначения:
* Ящик 1: Я1
* Ящик 2: Я2
* Ящик 3: Я3
* Белый шар: Б

* Вероятность выбора каждого ящика:
P(Я1) = P(Я2) = P(Я3) = 1/3 (так как ящик выбирается наугад)

* Вероятность вытащить белый шар из каждого ящика:
* P(Б|Я1) = 8 / (8 + 4) = 8/12 = 2/3
* P(Б|Я2) = 6 / (6 + 6) = 6/12 = 1/2
* P(Б|Я3) = 4 / (4 + 8) = 4/12 = 1/3

* Используем формулу полной вероятности:
P(Б) = P(Я1) * P(Б|Я1) + P(Я2) * P(Б|Я2) + P(Я3) * P(Б|Я3)
P(Б) = (1/3) * (2/3) + (1/3) * (1/2) + (1/3) * (1/3)
P(Б) = 2/9 + 1/6 + 1/9
P(Б) = 4/18 + 3/18 + 2/18
P(Б) = 9/18 = 1/2

Ответ: Вероятность того, что извлечённый шар белый, равна 1/2.

б) Вероятность, что белый шар из третьего ящика:

* Используем формулу Байеса:
P(Я3|Б) = [P(Б|Я3) * P(Я3)] / P(Б)

* Подставляем известные значения:
P(Я3|Б) = [(1/3) * (1/3)] / (1/2)
P(Я3|Б) = (1/9) / (1/2)
P(Я3|Б) = (1/9) * (2/1)
P(Я3|Б) = 2/9

Ответ: Вероятность того, что белый шар извлечён из третьего ящика, равна 2/9.

Аватар пользователя
Ученик
4мес

а) 1/2
б) хз

Аватар пользователя
Мудрец
4мес

это же легко