Mail.ruПочтаМой МирОдноклассникиВКонтактеИгрыЗнакомстваНовостиКалендарьОблакоЗаметкиВсе проекты

Вопрос для знающих, объясните простым языком ( ликбез для чайника) , в чем суть гипотезы Пуанкаре?

Сергей Харитонов Профи (855), закрыт 12 лет назад
Лучший ответ
Диана Тилегенова Профи (711) 12 лет назад
Схема доказательства

Поток Риччи — это определённое уравнение в частных производных, похожее на уравнение теплопроводности. Он позволяет деформировать риманову метрику на многообразии, но в процессе деформации возможно образование «сингулярностей» — точек, в которых кривизна стремится к бесконечности, и деформацию невозможно продолжить. Основной шаг в доказательстве состоит в классификации таких сингулярностей в трёхмерном ориентированном случае. При подходе к сингулярности поток останавливают и производят «хирургию» — выбрасывают малую связную компоненту или вырезают «шею» (то есть, вложенное ), а полученные две дырки заклеивают двумя шарами так, что метрика полученного многообразия становится достаточно гладкой — после чего продолжают деформацию. Классификация сингулярностей позволяет заключить, что каждый «выброшенный кусок» диффеоморфен сферической пространственной форме. Процесс, описанный выше, называется «поток Риччи с хирургией» .

При доказательстве гипотезы Пуанкаре начинают с произвольной римановой метрики на односвязном трёхмерном многообразии и применяют к нему поток Риччи с хирургией. Важным шагом является доказательство того, что в результате такого процесса «выбрасывается» всё. Это означает, что исходное многообразие можно представить как набор сферических пространственных форм, соединённых друг с другом трубками . Подсчёт фундаментальной группы показывает, что диффеоморфно связанной сумме набора пространственных форм и более того все тривиальны. Таким образом, является связной суммой набора сфер, то есть, сферой.
Остальные ответы
Krab Bark Искусственный Интеллект (191712) 12 лет назад
Любую сплошную поверхность без краев и разрывов деформацией можно свести к сфере, в том числе для таких поверхностей в многомерных пространствах.
Похожие вопросы